Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 320: 121188, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659786

RESUMO

Tuning 3D refractive indices of polymers is urgently needed for optical films, but it is quite challenging. Here, we proposed a simple constrained uniaxial stretch method that successfully tuned the 3D refractive indices in cellulose triacetate (TAC) films plasticized with triethyl citrate (TEC). Our results suggest that, under constrained uniaxial stretch, the main chains and side groups prefer to orientate in the stretch direction and the constrained direction, respectively. Such a unique chain arrangement differentiates the refractive indices in three directions of the film. The branched small molecule TEC is also crucial for tuning refractive indices, which promotes chain activity and enhances the chain orientation under stretching, leading to a considerable change in refractive indices before samples fracture. The polymer film we fabricated possesses a direction-dependent optical performance, where the refractive index in the film thickness direction is between that of the stretch direction and constrained direction. This work provides a fundamental understanding on the chain structure and optical performance of polymer films. The constrained uniaxial stretch method, in general, should also be applicable to tuning other 3D physical properties through tuning the direction-dependent orientation of polymers.

2.
Macromol Rapid Commun ; 44(18): e2300226, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37340957

RESUMO

As a key component in laminated glass, plasticized polyvinyl butyral (PVB) interlayer is a kind of impact-resistant polymer material with high toughness. Recently, by using ultrasmall angle X-ray scattering (USAXS) technique, Stretch-induced phase-separated structure on the scale of hundreds of nanometers formed in plasticized PVB for the first time is reported. In this work, the multiscale relaxation behavior of plasticized PVB is further investigated. The relaxation behavior of deformed plasticized PVB is studied from macroscopic stress, mesoscopic phase-separated structure, and microscopic chain segment by combining USAXS, and birefringence with in situ stretching device. The contributions of chain segments and hydrogen bonding clusters for the multiscale relaxation behavior are discussed.


Assuntos
Cloreto de Polivinila , Polivinil , Polivinil/química , Polímeros/química , Ligação de Hidrogênio
3.
Rev Sci Instrum ; 94(2): 023906, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859001

RESUMO

A biaxial stretching device is designed and developed for the real-time structural measurements of polymer films. This device adopts a vertical layout to perform real-time x-ray scattering measurements. It has a maximum stretching ratio of 8 × 8 in two perpendicular directions. Its maximum experimental temperature and stretching rate are 250 °C and 100 mm/s, respectively. The control accuracies of the experimental temperature and stretching rate are ±1 °C and 0.01 mm, respectively. All the parameters related to film biaxial processing, such as stretching speed, stretching ratio, and temperature, can be independently set. The device feasibility is demonstrated via a real-time experiment in a synchrotron radiation beamline. Wide-angle x-ray diffraction, small-angle x-ray scattering, and stress-strain data can be simultaneously obtained during various stretching modes. The proposed device fills the gap between the synchrotron radiation x-ray scattering technique and the biaxial stretching processing of polymer films. This device will play an important role in improving the understanding of the physics behind biaxial polymer processing.

4.
Angew Chem Int Ed Engl ; 60(44): 23584-23589, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34449971

RESUMO

Regio- and enantioselective hydroarylamination, hydroalkylamination and hydroamidation of styrenes have been developed by NiH catalysis with a simple bioxazoline ligand under mild conditions. A wide range of enantioenriched benzylic arylamines, alkylamines and amides can be easily accessed by nitroarenes, hydroxylamines and dioxazolones, respectively as amination reagents. The chiral induction in these reactions is proposed to proceed through an enantiodifferentiating syn-hydronickellation step.

5.
J Hazard Mater ; 411: 125113, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33858093

RESUMO

To deal with the drinking water safety caused by fluoride, a novel carboxylated polyacrylonitrile nanofibrous membrane (C-PAN NFM) is designed and fabricated massively for the first time by adopting synchronously biaxial stretching and carboxylation. The C-PAN NFM is composed of the layered stack structure by cross-linked nanofibers. Due to its high specific surface area, excellent hydrophilicity, a large amount of carboxyl and amine groups, C-PAN NFM owns high fluoride adsorption capacity and outstanding selectivity. Both the carboxylation and acid treatment of C-PAN NFM improved the fluoride adsorption capacity remarkably. Specifically, C-PAN NFM shows excellent reusability without secondary pollution. The fluoride adsorption behavior of C-PAN NFM is dominated by chemical adsorption, and the adsorption mechanism is mainly driven by hydrogen bonding and ion exchange. The mass-produced C-PAN NFM is a novel polyacrylonitrile-based porous membrane that shows a great application potential for fluoride removal with good efficiency and recyclability.

6.
Soft Matter ; 17(15): 4195-4203, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33881056

RESUMO

The chain dynamics and crystalline network structure of poly[R-3-hydroxybutyrate-co-4-hydroxybutyrate] (P(3HB-co-4HB)) were systematically investigated by the combination of various solid-state NMR techniques. High-resolution 13C cross-polarization (CP) and direct-polarization (DP) MAS with selective recycle delay times were first used to check the presence or absence of the 4HB unit in the crystalline domain. The results show that the 4HB unit is excluded from the crystalline domain. Afterward, 1H MAS Nuclear Overhauser Effect Spectroscopy (NOESY) with different mixing times was used, which shows that no micro-phase separation exists in the amorphous domain. 1H magic-sandwich-echo (MSE)-FID at elevated temperature shows the absence of motions on a timescale of 100 µs and below in the crystalline domain, as evidenced by the invariant second moment M2 of the proton line shape. Finally, the crystalline based network density was characterized directly by magic and polarization echo (MAPE)-double quantum (DQ) NMR, which shows a significant decreasing tendency after 80 °C. Such a decreasing crystalline network density, together with the reduced relaxation time, results in the significant decrement of the maximum stretch ratio and modulus in the high-temperature region.

7.
Soft Matter ; 16(15): 3599-3612, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32232297

RESUMO

The stretch-induced structural evolution mechanism is a long-standing scientific question in the post-stretching processing of polymer films. X-ray scattering, especially a combination of small- and wide-angle X-ray scattering (SAXS/WAXS), provides a powerful method to study the hierarchical structure of polymer films. Recent advances in synchrotron radiation (SR) light sources and detection techniques allow one to measure the structural evolution of polymer films during post-stretching processing in real time with ultrahigh time resolution, which benefits the understanding on this topic. This review summarizes some recent investigations on post-stretching processing of polymer films, which combine in situ X-ray scattering techniques with purposely designed tensile apparatus in terms of three aspects: uniaxial stretching, biaxial stretching and stretching with chemical reactions. Concerning the polymer bulk, traditional deformation mechanisms like stretch-induced crystallization (SIC), crystal slipping, phase transition and melting-recrystallization are discussed for the uniaxial and biaxial post-stretching of polymer films. New deformation models have been developed to focus on the structural evolution on the length scale of lamellar stacks, which consider the potential microphase separation of the interlamellar amorphous phase and microbuckling. For solution systems, the coupled effects of the mechanical work from external force and the chemical potential from possible chemical reactions are taken into account for the structural evolution during stretching in solution. Roadmaps of structural and morphological evolution in the processing parameter space (i.e., temperature, stress, strain and the concentration of additive in the bath solution) are eventually constructed for precursor films. The accumulation of a structural evolution database for post-stretching processing of polymer films can be expected to provide a helpful guide for industrial processing for high-performance polymers in the near future.

8.
Proc Natl Acad Sci U S A ; 117(14): 7606-7612, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32209673

RESUMO

Load-bearing biological tissues, such as muscles, are highly fatigue-resistant, but how the exquisite hierarchical structures of biological tissues contribute to their excellent fatigue resistance is not well understood. In this work, we study antifatigue properties of soft materials with hierarchical structures using polyampholyte hydrogels (PA gels) as a simple model system. PA gels are tough and self-healing, consisting of reversible ionic bonds at the 1-nm scale, a cross-linked polymer network at the 10-nm scale, and bicontinuous hard/soft phase networks at the 100-nm scale. We find that the polymer network at the 10-nm scale determines the threshold of energy release rate G0 above which the crack grows, while the bicontinuous phase networks at the 100-nm scale significantly decelerate the crack advance until a transition Gtran far above G0 In situ small-angle X-ray scattering analysis reveals that the hard phase network suppresses the crack advance to show decelerated fatigue fracture, and Gtran corresponds to the rupture of the hard phase network.

9.
Soft Matter ; 16(2): 447-455, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31803885

RESUMO

Strain-induced crystallization (SIC) in polybutadiene rubber (BR) was studied by in situ synchrotron radiation wide-angle X-ray diffraction (SR-WAXD) over a broad temperature range (-90 °C → 25 °C). Depending on the presence or absence of SIC and quiescent crystallization temperature, three temperature regions are divided. Detailed structural evolution is summarized in the strain-temperature space. Based on this micro-structural evolution information, the macroscopic mechanical response of BR, together with poly(isobutylene-isoprene) rubber (IIR) and natural rubber (NR), is reproduced based on Flory's and Plagge's theories. The origins of the mismatch of calculated and experimental stress-strain curves, especially in the large strain region, are discussed, and are mainly ascribed to the micro-macro connection approach and the network inhomogeneity.

10.
ACS Appl Mater Interfaces ; 11(50): 47535-47544, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31750643

RESUMO

The supreme mechanical performance of natural rubber (NR) is commonly attributed to strain-induced crystallization (SIC). The SIC of NR during uniaxial stretch has been extensively investigated, whereas that under multiaxial deformation has been rarely reported, which is close to real service conditions (i.e., tire). In this work, the crystallization behavior of NR under biaxial stretch was studied with in situ synchrotron radiation wide-angle X-ray diffraction in combination with a custom-built biaxial stretch machine. It is observed that biaxial stretch frustrates the SIC of NR: within λx/λy < 1.6, where λx and λy are stretch ratios of two mutually perpendicular axes, no crystallization emerges even under large drawing ratio until sample fracture at ambient temperature. This finding challenges the common wisdom of the self-reinforcement mechanism of SIC in NR under multiaxial deformation in real service conditions. A theoretical SIC model is proposed, which can decouple the contributions of conformational entropy reduction ΔSf and amorphous chain orientation f to final Gibbs free energy change (ΔG) during multiaxial deformation. This model quantitatively renders a reproduction of the crystallinity during the biaxial stretch, which is well consistent with experimental results and can be further generalized for flow-induced crystallization of semicrystalline polymers.

11.
Biomacromolecules ; 20(10): 3895-3907, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31525027

RESUMO

One prerequisite for the large-scale application of biodegradable polymers is the manipulation of macroscopic performances of commercially available biopolymers during processing according to different real service requirements. Herein, the microstructural evolution of poly(butylene adipate-co-butylene terephthalate) (PBAT) modified by chain extender during film blowing was investigated by in situ synchrotron radiation X-ray scattering to unveil the origin of different performances. The chain dynamics difference induced by the chain extender was first characterized by the rheological measurement and 1H Multiple Quantum (MQ) NMR. It shows that the terminal relaxation is significantly slowed down, while the locally segmental dynamics is not apparently changed. With the assistance of the custom-built film blowing apparatus, the microstructure right above the die exit (D = 13-165 mm) was in situ, simultaneously captured by small- and wide-angle scattering (SAXS/WAXS), where four distinct regimes can be defined. Only the PBAT melt signals are found in regime I, whereas the formation of the mesomorphic domains as shown by the SAXS streaks appearing in regime II. The crystal shows up in regime III, where the WAXS signal appears. A dramatic increment of the crystallinity is found in regime III, which contributes to the continuous increasing bubble modulus with the formation of the crystal-based network. Such a crystal-based network is filled with crystals in regime IV, where the diameter of the PBAT bubble remains constant. The addition of the chain extender is found to significantly influence the structural evolution within different regimes. These dynamics and structure information could supply general guidance for bubble stability improvement and modification of macroscopic performances of biodegradable polymer products.


Assuntos
Plásticos Biodegradáveis/química , Poliésteres/química , Varredura Diferencial de Calorimetria/métodos , Espalhamento a Baixo Ângulo , Síncrotrons , Difração de Raios X/métodos , Raios X
12.
Polymers (Basel) ; 11(10)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561540

RESUMO

Polymer films based on polyethylene (PE) and ionomer ethylene/methacrylic acid (EMAA) copolymer blend were prepared by film blowing, whose surface properties were tuned by varying processing parameters, i.e., take up ratio (TUR). Blends of PE/EMAA copolymer were firstly prepared by the melt-mixing method, before being further blown to films. The wettability of the film was investigated by measuring the contact angle/water-film encounter time, and optical properties, i.e., the haze and transmittance. The wettability was found to be enhanced with the increase of TUR. So too was the haze, while the transmittance was found to be almost independent of TUR. The XPS and AFM results directly show the increasing polar functional groups (-COO-) on the surface and roughness with increasing TUR. Further analysis of the 2D SAXS and WAXS unveiled the origin of the invariant transmittance, which resulted from the minor change of the crystallinity and the monotonic increase of the haze, with TUR resulting from the evolution of crystal orientation. In addition to other post-modification methods, the current study provides an alternative route to prepare large-scale PE films as the template for the advanced potential applications, i.e., covering in the layer of roof, the privacy of protective windows, and multitudes of packaging.

13.
Soft Matter ; 15(21): 4363-4370, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31086876

RESUMO

With the combination of a low-temperature extension rheometer and in situ synchrotron radiation wide-angle X-ray diffraction (SR-WAXD), the strain-induced crystallization (SIC) of poly(isobutylene-isoprene) rubber (IIR) was studied in the low-temperature region (-60 °C → 25 °C). The detailed structural evolution of IIR during the SIC is summarized in the strain-temperature space, where three distinct temperature zones are defined. The absence of the SIC in zone I (T > 0 °C) results in the poorest drawability of IIR among all measured temperatures. And with respect to the lowest temperature zone III (-60 °C < T < -50 °C), the SIC still occurs with low ultimate crystallinity (ca. 0.9%). More complicated structural evolution induced by the strain occurs in the intermediate-temperature zone II (-50 °C ≤ T ≤ 0 °C). The orientation ratio of the amorphous part Oa increases monotonically with the increment of the strain, but reaches a platform with Hencky strain ε > ca. 1.8. Meanwhile, the strain-induced crystal growth of IIR is evidenced by the dramatic increment of the lateral crystallite size of (110) and (113) planes. Moreover, the retraction experiment further reveals the network evolutions of IIR: suffering from low ultimate crystallinity (

14.
Soft Matter ; 15(4): 734-743, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30633295

RESUMO

Strain-induced crystallization (SIC) of natural rubber (NR) at descending temperatures as low as -60 °C is systematically investigated by in situ synchrotron radiation wide-angle X-ray diffraction (SR-WAXD) measurement. The detailed structural evolution of NR during SIC is studied in the strain-temperature space, where up to four regions are defined depending on the SR-WAXD results. In region I, the molecular chains begin to be oriented under tensile loading. The onset of crystallization happens in the very beginning of region II, and the NR crystal acts as a new physical cross-linking point to form a crystal network, namely the series model. The further increment of crystallinity (> ca. 8%) leads to the transition of the crystal network from the series model to the parallel model in region III. The crystal network is finally accomplished in region IV, where the crystallinity remains almost constant. Interestingly, regions III and IV exist only in the intermediate-temperature zone II (-40 °C to -10 °C), which are missing in zones I (-10 °C to 25 °C) and III (-60 °C to -40 °C). This suggests that sufficient crystallinity (χII-III > ca. 8%) is required to form the parallel model. The new crystal network provides a deep understanding of SIC of NR considering the microscopic features, i.e. oriented amorphous component, the onset of crystallization and crystallinity evolution and its correlation with the macroscopic stress-strain curve.

15.
Langmuir ; 34(43): 13006-13013, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30299966

RESUMO

The smart flexibility of phase transitions in liquid crystals (LCs) makes them suitable for various applications and is an important research field in contemporary science, engineering, and technology. Unlike most reports focused on bent-core LCs in the thermotropic situation, in our present study, we designed and synthesized a fully rigid bent-core molecule with the sulfonic acid group replacing conventional flexible chains. A rich variety of counterion-induced supramolecular LC phase behaviors have been systematically investigated. It was found that the smectic phase with nanosheets tends to transform to the hexagonal phase with nanofilaments when the protons of the sulfonic acid group are partially replaced by alkali metal ions. The experimental results show that the nanoaggregate and phase transition are controlled by the displacing ratio of alkali metal ions rather than the molecular concentration. Another interesting feature is that the achiral bent-core molecules self-assemble into columns by helical stacking and present macroscopic chirality, indicating that spontaneous chiral symmetry breaking occurs in the columnar phase. The fully rigid bent-core molecules reveal surprisingly hierarchical molecular self-assemblies with the smectic-to-hexagonal phase transition, which was not previously observed in supramolecular complexes. The findings will provide new possibilities for applications in LC-based photonic devices, biosystem switches, and supramolecular actuators.

16.
Rev Sci Instrum ; 89(7): 073101, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30068120

RESUMO

A system with the combination of quantum cascade lasers (QCLs) and a photoelastic modulator (PEM) has been designed and constructed, which can achieve orientation detection with a time resolution of nearly 20 µs based on the principle of infrared dichroism, several orders of magnitude higher than that of the general mid-infrared spectrum. PEM with an inherent frequency of 50 kHz is employed to modulate the polarization direction of infrared light rapidly, the controller of which is used to provide the external trigger signal. A double frequency and delay circuit is fabricated to match the frequency of QCLs and PEM as well as overcome the delay during transfer of the trigger signal to a QCL controller, which can realize a minimum delay resolution of 5 ns. Also, a data acquisition program is compiled to reduce the data size, making continuous collection possible and lowering difficulty in data processing. The system is combined with the home-made biaxial stretching equipment to conduct the sequential biaxial stretching of ß-polypropylene (PP) films. It shows that the orientation factor of polymer chains increases from 0.04 to 0.36 during machine stretching, which decreases to 0 during transverse stretching, fitting well with the orientation factors estimated with FTIR. The result robustly proves the feasibility of the system for rapid orientation detection.

17.
Soft Matter ; 14(13): 2535-2546, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29538472

RESUMO

Fibrillation and the complexation reaction between poly(vinyl alcohol) (PVA)-iodine (i) complexes have been studied with in situ synchrotron radiation small- and wide-angle X-ray scattering (SAXS and WAXS) during the uniaxial stretching of PVA films in KI/I2 aqueous solution. SAXS results show that stretching induces the formation of nanofibrils, which pack periodically in the later stage of stretching with an average inter-fibrillar distance of around 10 nm. The onset strains for fibrillation and the appearance of periodicity of nanofibrils are located at the beginning and the end of the stress plateau, and decrease with increasing iodine concentration. In the stretching process as a whole, the presence of iodine ions reduces the crystallinity of the PVA crystal but favors the formation of a PVA-I complex. The complexation reaction is promoted by the synergistic effect of stretch and iodine ions, during which stretching drives the formation of polyiodine via the effect of entropic reduction while iodine concentration dictates crystallization of PVA-I3- co-crystals through the role of chemical potential. A morphological and structural phase diagram is constructed in the strain-iodine concentration space, which defines the regions for fibrillation and complexation reactions and may serve as a roadmap for the industrial processing of PVA polarizer.

18.
Soft Matter ; 13(19): 3639-3648, 2017 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-28447701

RESUMO

Structural and morphological transitions of flow-induced crystallization (FIC) in poly(1-butene) (PB-1) melt have been studied by combining extensional rheology and in situ synchrotron radiation ultrafast wide- and small-angle X-ray scattering (WAXD/SAXS) measurements. Unexpectedly, metastable Form III is crystallized directly from the PB-1 melt by high-speed extension, which has a short lifetime of several tens of milliseconds and manifests the thermodynamic and kinetic competition among Form III, Form II and melt under flow. Relative crystallinity evolution of Form II after extension reveals a crystal melting dominated process within the observation time of 120 s even under high supercooling. This is opposite to the common case of FIC but supports the idea that flow alters the obtained crystal size and its thermodynamic stability. Additionally, a morphological transition from a flow-induced network to shish is observed by SAXS with increasing extension temperature from below to above the melting point of Form II. With above observations, we construct nonequilibrium structural and morphological diagrams of FIC in strain rate-temperature space, which may guide the industrial processing of the PB-1 material.

19.
Soft Matter ; 11(25): 5044-52, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26021287

RESUMO

The effect of flow on crystallization is commonly attributed to entropic reduction, which is caused by stretch and orientation of polymer chains but overlooks the role of flow on final-state free energy. With the aid of in situ synchrotron radiation wide-angle X-ray diffraction (WAXD) and a homemade constrained uniaxial tensile testing machine, polycrystals possessing single-crystal-like orientation rather than uniaxial orientation are found during the constrained stretch of natural rubber, whereas the c-axis and a-axis align in the stretch direction (SD) and constrained direction (CD), respectively. Molecular dynamics simulation shows that aligning the a-axis of crystal nuclei in CD leads to the lowest free energy increase and favors crystal nucleation. This indicates that the nomenclature of strain-induced crystallization may not fully account for the nature of flow-induced crystallization (FIC) as strain mainly emphasizes the entropic reduction of initial melt, whereas stress rather than strain plays the dominant role in crystal deformation. The current work not only contributes to a comprehensive understanding of the mechanism of flow-induced crystallization but also demonstrates the potential application of constrained uniaxial tensile stretch for the creation of functional materials containing polycrystals that possess single-crystal-like orientation.


Assuntos
Borracha/química , Cristalização/instrumentação , Desenho de Equipamento , Estresse Mecânico , Síncrotrons , Resistência à Tração , Termodinâmica , Difração de Raios X/instrumentação
20.
Rev Sci Instrum ; 85(12): 125110, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25554329

RESUMO

A small-angle x-ray scattering (SAXS) system with a vertical layout (V-SAXS) has been designed and constructed for in situ detection on nanostructures, which is well suitable for in situ study on self-assembly of nanoparticles at liquid interface and polymer processing. A steel-tower frame on a reinforced basement is built as the supporting skeleton for scattering beam path and detector platform, ensuring the system a high working stability and a high operating accuracy. A micro-focus x-ray source combining parabolic three-dimensional multi-layer mirror and scatteringless collimation system provides a highly parallel beam, which allows us to detect the very small angle range. With a sample-to-detector distance of 7 m, the largest measurable length scale is 420 nm in real space. With a large sample zone, it is possible to install different experimental setups such as film stretching machine, which makes the system perfect to follow the microstructures evolution of materials during processing. The capability of the V-SAXS on in situ study is tested with a drying experiment of a free latex droplet, which confirms our initial design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...