Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 933: 173171, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38740208

RESUMO

Phosphogypsum (PG) is the produced solid waste during phosphorus (P) extraction from phosphate rocks. PG is featured by its abundant PO43- and SO42-. This study investigated the utilization of PG as a material for lead (Pb) remediation, with the assistance of functional fungus. Aspergillus niger (A. niger) is a typical phosphate-solubilizing fungi (PSF), which has high ability to secret organic acids. Oxalic acid is its major secreted organic acid, which is often applied to enhance the P release from phosphate minerals. In this study, synthetic oxalic acid increased the immobilization rate of Pb2+ up to >99 % with the addition of PG. Then, it was observed that biogenic oxalic acid from A. niger can achieve comparable remediation effects. This was due to that PG could provide sufficient P for fungal growth, which allowed sustainable remediation. Subsequently, oxalic acid secreted by A. niger significantly increased the release of active P from PG, and then induced the formation of PPb minerals. In addition, other metabolites of A. niger (such as tyrosine-like substance) can also be complexed with Pb2+. Simultaneously, A. niger did not induce evidently elevation water-soluble fluorine (F) as PG contained abundant Ca2+. Moreover, this study elucidated that oversupply of PG promoted the formation of anglesite (Ksp = 1.6 × 10-8, relatively unstable), whereas the formation of lead oxalate (Ksp = 4.8 × 10-10, relatively stable) was reduced. This study hence shed a bright light on the sustainable utilization of PG for fungus-assisted remediation of heavy metals.


Assuntos
Aspergillus niger , Biodegradação Ambiental , Sulfato de Cálcio , Chumbo , Fosfatos , Fósforo , Poluentes do Solo , Chumbo/metabolismo , Fósforo/metabolismo , Aspergillus niger/metabolismo , Fosfatos/metabolismo , Poluentes do Solo/metabolismo , Recuperação e Remediação Ambiental/métodos
2.
Curr Res Microb Sci ; 6: 100221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292865

RESUMO

Phosphorus (P) is one of the most common limited nutrients in terrestrial ecosystems. Animal bones, with abundant bioapatite, are considerable P sources in terrestrial ecosystems. Heating significantly promotes P release from bone bioapatite, which may alleviate P limitation in soil. This study aimed to explore P release from charred bone (CB) under heating at various temperatures (based on common natural heating). It showed that heating at ∼300 °C significantly increased the P release (up to ∼30 mg/kg) from CB compared with other heating temperatures. Then, the subsequent changes of available P and pH induced evident alternation of soil microbial community composition. For instance, CB heated at ∼300 °C caused elevation of phosphate-solubilizing fungi (PSF) abundance. This further stimulated P mobility in the soil. Meanwhile, the fungal community assembly process was shifted from stochastic to deterministic, whereas the bacterial community was relatively stable. This indicated that the bacterial community showed fewer sensitive responses to the CB addition. This study hence elucidated the significant contribution of heated bone materials on P supply. Moreover, functional fungi might assist CB treated by natural heating (e.g., fire) to construct P "Hot Spots".

3.
Front Psychol ; 13: 1034912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389470

RESUMO

This article reports on a corpus-based study of the English translation of Wang Anyi's award-winning novel, The Song of Everlasting Sorrow [, Chang Hen Ge] from the perspective of style. Using the keyword and concordance functions of corpus software packages AntConc and ParaConc, this research focuses on how the translator's style reveals itself in the target text (TT) as well as how the style of the source text (ST) is represented in the TT. Findings show that the translators have a preference for contracted negative verb forms and expressions such as "bit" over "little," making the text more colloquial. In general, the rendering of the ST style tends not to be entirely faithful. A distinction between reader-centered and text-centered keywords is made. While the reader-centered ST keywords are, as expected, largely altered, the translation of text-centered ST keywords is also rewritten, contrary to expectations. Presumably, the translators tended to reduce the ambiguity of the ST, resulting in a more explicit TT. The article argues that the translators chose to rewrite the translation to make it more understandable for the target audience since it concerned a work from a source culture very different from the target culture.

4.
Nat Commun ; 13(1): 5571, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36137999

RESUMO

In vivo optogenetics and photopharmacology are two techniques for controlling neuronal activity that have immense potential in neuroscience research. Their applications in tether-free groups of animals have been limited in part due to tools availability. Here, we present a wireless, battery-free, programable multilateral optofluidic platform with user-selected modalities for optogenetics, pharmacology and photopharmacology. This system features mechanically compliant microfluidic and electronic interconnects, capabilities for dynamic control over the rates of drug delivery and real-time programmability, simultaneously for up to 256 separate devices in a single cage environment. Our behavioral experiments demonstrate control of motor behaviors in grouped mice through in vivo optogenetics with co-located gene delivery and controlled photolysis of caged glutamate. These optofluidic systems may expand the scope of wireless techniques to study neural processing in animal models.


Assuntos
Neurociências , Optogenética , Animais , Encéfalo/fisiologia , Glutamatos , Camundongos , Optogenética/métodos , Tecnologia sem Fio
5.
Environ Sci Pollut Res Int ; 29(50): 76446-76455, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35670942

RESUMO

Phosphate-solubilizing fungi (PSF) can enhance P release from phosphate minerals to immobilize heavy metals. However, this promotion substantially depends on their survival in highly polluted soils. The aim of this study was to investigate the survival of PSF after addition of phosphogypsum (PG) and bioorganic fertilizer (BF) in the soil with coexistence of multiple heavy metals, e.g., Pb, As, Cd, Sb, etc. Addition of typical PSF (Aspergillus niger) did not promote the formation of pyromorphite (the most stable form of Pb), possibly due to the buffering effect of the soil (the secreted oxalic acid was neutralized) and limited P supply. Meanwhile, despite that A. niger has high tolerance to heavy metal stress, its survival was significantly declined due to the deficiency of available P. It was also shown that PG, as the major by-product in phoschemical industry, still has relatively high available P compared with common natural soils. PG addition dramatically increased available P (up to 93.87 mg/kg) and the subsequent fungal growth. However, sole PG did not promote the formation of pyromorphite, probably as the abundant Fe2+ and Mn2+ prevented the contact between PO43- and Pb2+ in the soil system. The enhanced soil respiration after addition of BF and PG confirmed the promoted microbial activity (elevated to 3465.58 µg C kg h-1). This study showed PG's potential as P source for both microbial growth and heavy metal remediation in soil system. A combination of PG, A. niger, and BF can hence achieve long-term bioremediation of heavy metals.


Assuntos
Metais Pesados , Poluentes do Solo , Aspergillus niger , Biodegradação Ambiental , Cádmio , Sulfato de Cálcio , Fertilizantes , Chumbo , Metais Pesados/análise , Minerais , Ácido Oxálico , Fosfatos , Fósforo , Solo , Poluentes do Solo/análise
6.
J Hazard Mater ; 426: 127984, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34953259

RESUMO

The coexistence of heavy metals in aquatic systems causes complex toxicity in microorganisms. In this study, we explored the influences of Pb2+ addition on Cd2+ toxicity in Rhodotorula mucilaginosa (Rho). Cd toxicity alone was tested with up to 200 mg/L Cd2+ to induce stress. Cell counts and Cd2+ removal rates declined to a minimum when the Cd2+ concentration reached 150 mg/L, confirming strong Cd-induced toxicity. Then, co-existence of Pb2+ and Cd2+ was established as Pb-CdH (Pb/Cd = 1, molar ratio), Pb-CdM (Pb/Cd = 10), and Pb-CdL (Pb/Cd = 100). The Pb-CdL and Pb-CdM treatments showed clear similarities in terms of their effects on cell counts, polysaccharide concentrations, and cell morphology. There was also no significant difference in their gene expression profiles. The competition between the two types of cations caused preferential extra/intracellular sorption of less toxic Pb2+. Moreover, the expression of genes related to glycolysis, the TCA cycle, and oxidative phosphorylation was significantly enhanced in the cells with Pb-CdH treatment, suggesting that these cells were functional. Furthermore, the excitability-caused increase in the cell count after Pb-CdH treatment (Cd2+ = 112.4 mg/L) was 30% higher than that of the 100 mg/L Cd2+ treatment. These results proved that the addition of Pb2+ in solution significantly weakened the toxicity of Cd2+.


Assuntos
Cádmio , Metais Pesados , Cádmio/toxicidade , Fungos , Chumbo/toxicidade
7.
Front Bioeng Biotechnol ; 10: 1096384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714633

RESUMO

In the bioremediation process, coexistence of lead (Pb) and cadmium causes complex toxicity, resulting in the difficulty of bioremediation. This study investigated the physiological responses and bioaccumulation mechanisms of the typical filamentous fungus Aspergillus niger under the coexistence of Pb and Cd. Four treatments were set up, i.e., control, sole Pb, sole Cd, and coexistence of Pb and Cd. The morphology of A. niger were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Then, nano-scale secondary ion mass spectrometry (NanoSIMS) was applied to accurately investigate the distribution of heavy metals in the fungal cells under the coexistence of Pb and Cd. Finally, the metallogenic process and mineral types were simulated by Geochemist's Workbench (GWB). The electron microscopic and NanoSIMS imaging showed that Pb and Cd were accumulated in both the extracellular and intracellular regions of the A. niger cells. In particular, the accumulated Pb content was ten times higher than that of Cd. However, Cd showed stronger toxicity than Pb to A. niger. Compared with the control treatment, Cd stress resulted in a two-fold increase of cell diameter and more extracellular substances, whereas the cell diameter increased nearly four times in the coexistence treatment. Moreover, the bioaccumulation of Pb was more intense than that of Cd during competitive sorption. The GWB simulation confirmed that Pb2+ can form multiple minerals (e.g., PbC2O4, PbHPO4, and Pb3(PO4)2, etc.), which significantly weakened its toxicity on the cell surface. This study elucidated the morphological characteristics of A. niger and competitive bioaccumulation under the coexistence of Pb and Cd, which would facilitate the application of microorganisms to the bioremediation of coexisted metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...