Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(6): 7415-7429, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38303129

RESUMO

The synthesis of materials with a multicomponent hierarchical structure is an essential strategy for achieving high-performance electromagnetic wave (EMW) absorption. However, conventional design strategies face challenges in terms of the rational construction of specific architecture. In this study, we employ a combined space-restricted and hierarchical construction strategy to surface-plant MoS2 nanosheets on yolk-shell structural carbon-modified Co-based composites, leading to the development of high-performance Co/NC@void@C@MoS2 absorbers with advanced architecture. The surface-planted MoS2 nanosheets, the Co/NC magnetic yolk, and the dielectric carbon shell work together to enhance the impedance matching characteristics and synergistic loss capabilities in the composites. Experimental results indicate that Co/NC@void@C-700@MoS2 exhibited the best absorption performance with an effective absorption bandwidth of 7.54 GHz (at 2.05 mm) and a minimum reflection loss of -60.88 dB (at 1.85 mm). Furthermore, radar cross-section simulation results demonstrate that Co/NC@void@C-700@MoS2 effectively suppresses the scattering and transmission of EMWs on perfect electric conductor substrates, implying its superior practical application value. This study provides inspiration and experimental basis for designing and optimizing EMW absorption materials with hierarchical yolk-shell architecture.

2.
J Colloid Interface Sci ; 659: 945-958, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219313

RESUMO

The rational and effective combination of multicomponent materials and the design of subtle microstructure for efficient microwave absorption are still challenging. In this study, carbon-coated CoFe with heterogeneous interfaces was space-restricted in the void space of hollow mesoporous carbon spheres through a facile approach involving electrostatic adsorption and annealing, and a high-performance microwave absorber (MAs) (denoted as Co0.7Fe0.3@C@void@C) was successfully prepared. The heterostructure, three-dimensional lightweight porous morphology, and electromagnetic synergy strategy enabled the Co0.7Fe0.3@C@void@C material with yolk-shell structure to exhibit surprising microwave absorption properties. When the annealing temperature and filler loading were 550° C and 15 wt%, respectively, the composites exhibited an effective absorption bandwidth (EAB) of 7.16 GHz at 2.48 mm and a minimum reflection loss of -24.1 dB at 2.11 mm. A maximum EAB of 7.21 GHz at 2.37 mm could be achieved for the composite prepared with an annealing temperature of 650° C. In addition, radar cross-section experiments demonstrated, the potential practical applicability of Co0.7Fe0.3@C@void@C. This work expands a new avenue to develop high-performance and lightweight MAs with ingenious microstructure.

3.
ACS Appl Mater Interfaces ; 7(35): 19843-52, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26288386

RESUMO

The application of nanomaterials in intelligent drug delivery is developing rapidly for treatment of cancers. In this paper, we fabricated a new kind of protease/redox/pH stimuli-responsive biodegradable nanohydrogels with methacrylic acid (MAA) as the monomer and N,N-bis(acryloyl)cystamine (BACy) as the cross-linker through a facile reflux-precipitation polymerization. After that, the polyethylene glycol (PEG) and folic acid (FA) were covalently grafted onto the surface of the nanohydrogels for enhancement of their long in vivo circulation lifetime and active targeting ability to the tumor cells and tissues. This kind of nanohydrogels could be disassembled into short polymer chains (Mn<1140; PDI<1.35) both in response to glutathione (GSH) through reduction of the sensitive disulfide bonds and protease by breakage of the amido bonds in the cross-linked networks. The nanohydrogels were utilized to simultaneously load both hydrophilic drug doxorubicin (DOX) and hydrophobic drug paclitaxel (PTX) with high drug loading efficiency. The cumulative release profile showed that the drug release from the drug-loaded nanohydrogels was significantly expedited by weak acidic (pH 5.0) and reducing environment (GSH), which exhibited an distinct redox/pH dual stimuli-responsive drug release to reduce the leakage of drugs before they reach tumor site. In addition, the in vitro experiment results indicated that the multidrug-loaded system had synergistic effect on cancer therapy. Meanwhile, the acute toxicity and intravital fluorescence imaging studies were adopted to evaluate the biocompatibility and biotoxicity of the nanohydrogels, the experimental results showed that the PEG modification could greatly enhance the long in vivo circulation lifetime and reduce the acute toxicity (LD50: from 138.4 mg/kg to 499.7 mg/kg) of the nanohydrogels.


Assuntos
Portadores de Fármacos/química , Hidrogéis/química , Nanoestruturas/química , Peptídeo Hidrolases/metabolismo , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Biodegradação Ambiental , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Ácido Fólico/química , Glutationa/química , Glutationa/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos ICR , Oxirredução , Paclitaxel/química , Paclitaxel/metabolismo , Paclitaxel/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...