Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297353

RESUMO

Awareness of environmental issues has led to increasing interest from composite researchers in using "greener" materials to replace synthetic fiber reinforcements and petrochemical polymer matrices. Natural fiber bio-based thermoplastic composites could be an appropriate choice with advantages including reducing environmental impacts, using renewable resources and being recyclable. The choice of polymer matrix will significantly affect the cost, manufacturing process, mechanical properties and durability of the composite system. The criteria for appropriate monomers are based on the processing temperature and viscosity, polymer mechanical properties, recyclability, etc. This review considers the selection of thermoplastic monomers suitable for in situ polymerization during resin, now monomer, infusion under flexible tooling (RIFT, now MIFT), with a primary focus on marine composite applications. Given the systems currently available, methyl methacrylate (MMA) may be the most suitable monomer, especially for marine composites. MMA has low process temperatures, a long open window for infusion, and low moisture absorption. However, end-of-life recovery may be limited to matrix depolymerization. Bio-based MMA is likely to become commercially available in a few years. Polylactide (PLA) is an alternative infusible monomer, but the relatively high processing temperature may require expensive consumable materials and could compromise natural fiber properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...