Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(25): 30262-30271, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37337471

RESUMO

Ag single-atom catalysts (SACs) have great potential in selective electrocatalysis of the CO2 reduction reaction (CO2RR) to CO, while it is still a challenge to achieve high current density and high atom efficiency simultaneously. Here, we present a new and simple in situ adsorption-reduction method to prepare Ag SACs supported on CeO2 (Ag1/CeO2). It is found that Ag single atoms are anchored on CeO2 through strong metal-support interaction (SMSI), and each Ag atom is accompanied with three interfacial oxygen vacancies. This Ag1/CeO2 exhibits high performance in the electrocatalytic CO2RR with a high CO faradaic efficiency (FE) of >95% under a wide potential range. The turnover frequency (TOF) value can reach 50,310 h-1 at FECO = 99.5% in H-cells. Notably, Ag1/CeO2 achieves an industrial-grade current density of 403 mA cm-2 with a high FECO of 97.2% in flow cells. Experimental results combined with density functional theory calculation revealed that this superior performance was mainly ascribed to the existence of interfacial oxygen vacancies, which lead to the formation of Ag-O-Ce3+ atomic interfaces, and activates the Ce3+-O structures as the synergistic active center of Ag, thus promoting CO2 adsorption and activation and reducing the reaction potential barrier of *COOH-to-*CO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...