Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38409639

RESUMO

Bladder outlet obstruction (BOO) is the primary clinical manifestation of benign prostatic hyperplasia, the most common urinary system disease in elderly men, and leads to associated lower urinary tract symptoms. Although BOO is reportedly associated with increased systemic oxidative stress (OS), the underlying mechanism remains unclear. The elucidation of this mechanism is the primary aim of this study. A Sprague-Dawley rat model of BOO was constructed and used for urodynamic monitoring. The bladder tissue of rats was collected and subjected to real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR), histological examination, and immunohistochemical staining. Through bioinformatics prediction, we found that transforming growth factor ß2 (TGFß2) expression was upregulated in rats with BOO compared with normal bladder tissue. In vitro analyses using primary bladder smooth muscle cells (BSMCs) revealed that hydrogen peroxide (H2O2) induced TGFß2 expression. Moreover, H2O2 induced epithelial-to-mesenchymal transition (EMT) by reducing E-cadherin, an endothelial marker and CK-18, a cytokeratin maker, and increasing mesenchymal markers, including N-cadherin, vimentin, and α-smooth muscle actin (α-SMA) levels. The downregulation of TGFß2 expression in BSMCs using siRNA technology alleviated H2O2-induced changes in EMT marker expression. The findings of the study indicate that TGFß2 plays a crucial role in BOO by participating in OS-induced EMT in BSMCs.

2.
Biol Trace Elem Res ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079059

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) can result in the reduction of sperm numbers, but the mechanisms have not been well elucidated. The purpose of this study was to investigate the effects of TiO2 NPs on cell cycle and apoptosis in spermatogonia and to explore the role of PI3K/AKT/mTOR signaling pathway in this process. The mouse spermatogonia cell line (GC-1) was treated with TiO2 NPs at different concentrations (0, 25, 50, 75 and 100 µg/mL) for 24 h to detect cell viability, cell cycle, apoptosis, and key proteins related to cell cycle and PI3K/AKT/mTOR signaling pathway. The agonist (IGF-1) and inhibitor (LY294002) of PI3K were used to verify the role of PI3K/AKT/mTOR signaling pathway in cell cycle and apoptosis. TiO2 NPs significantly inhibited cell proliferation, induced cell cycle arrest at G0/G1 phase and resulted in apoptosis. TiO2 NPs downregulated the levels of cyclin-dependent kinases (CDKs) and cyclins, including CDK4, CDK2, Cyclin D1 and Cyclin E1, while upregulated the levels of p21 and p53 proteins. Furthermore, TiO2 NPs inhibited the PI3K/AKT/mTOR signaling pathway by decreasing the levels of p-PI3K, p-AKT and p-mTOR. IGF-1 reversed the G0/G1 phase arrest and apoptosis caused by TiO2 NPs. However, LY294002 aggravated the G0/G1 phase arrest and apoptosis resulting from TiO2 NPs. Collectively, TiO2 NPs induced cell cycle arrest at G0/G1 phase and apoptosis through inhibiting the activation of PI3K/AKT/mTOR pathway, which could be the main reason for the reduction in sperm numbers caused by TiO2 NPs.

3.
Toxicol Mech Methods ; 33(4): 249-259, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36097686

RESUMO

With the extensive application of titanium dioxide nanoparticles (TiO2 NPs), their impacts on calcium homeostasis have aroused extensive attention from scholars. However, there are still some controversies in relevant reports. Therefore, a systematic review was performed followed by a meta-analysis to explore whether TiO2 NPs could induce the imbalance in calcium homeostasis in vivo and in vitro through Revman5.4 and Stata15.0 in this research. Fourteen studies were included through detailed database retrieval and literature screening. Results indicated that the calcium levels were significantly increased and the activity of Ca2+-ATPase was significantly decreased by TiO2 NPs in vivo and in vitro. Subgroup analysis of the studies in vivo showed that TiO2 NPs exposure caused a significant increase in calcium levels in rats, exposure to large-sized TiO2 NPs (>10 nm) and long-term (>30 days) exposure could significantly increase calcium levels, and the activity of Ca2+-ATPase showed a concentration-dependent downward trend. Subgroup analysis of the studies in vitro revealed that intracellular calcium levels increased significantly in animal cells, exposure to small-sized TiO2 NPs (≤10 nm) and high concentration (>10 µg/mL) exposure could induce a significant increase in Ca2+ concentration, and the activity of Ca2+-ATPase also showed a concentration-dependent downward trend. This research showed that the physicochemical properties of TiO2 NPs and the experimental scheme could affect calcium homeostasis.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ratos , Animais , Cálcio , Nanopartículas/toxicidade , Adenosina Trifosfatases , Homeostase , Nanopartículas Metálicas/toxicidade
4.
Chem Res Toxicol ; 35(9): 1435-1456, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35998370

RESUMO

Although most studies that explore the cytotoxicity of titanium dioxide nanoparticles (nano-TiO2) have focused on cell viability and oxidative stress, the cell cycle, a basic process of cell life, can also be affected. However, the results on the effects of nano-TiO2 on mammalian cell cycle are still inconsistent. A systematic review and meta-analysis were therefore performed in this research based on the effects of nano-TiO2 on the mammalian cell cycle in vitro to explore whether nano-TiO2 can induce cell cycle arrest. Meanwhile, the impact of physicochemical properties of nano-TiO2 on the cell cycle in vitro was investigated, and the response of normal cells and cancer cells was compared. A total of 33 articles met the eligibility criteria after screening. We used Review Manager 5.4 and Stata 15.1 for analysis. The results showed an increased percentage of cells in the sub-G1 phase and an upregulation of the p53 gene after being exposed to nano-TiO2. Nevertheless, nano-TiO2 had no effect on cell percentage in other phases of the cell cycle. Furthermore, subgroup analysis revealed that the cell percentage in both the sub-G1 phase of normal cells and S phase of cancer cells were significantly increased under anatase-form nano-TiO2 treatment. Moreover, nano-TiO2 with a particle size <25 nm or exposure duration of nano-TiO2 more than 24 h induced an increased percentage of normal cells in the sub-G1 phase. In addition, the cell cycle of cancer cells was arrested in the S phase no matter if the exposure duration of nano-TiO2 was more than 24 h or the exposure concentration was over 50 µg/mL. In conclusion, this study demonstrated that nano-TiO2 disrupted the cell cycle in vitro. The cell cycle arrest induced by nano-TiO2 varies with cell status and physicochemical properties of nano-TiO2.


Assuntos
Nanopartículas , Titânio , Animais , Ciclo Celular , Mamíferos/metabolismo , Nanopartículas/química , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Titânio/química , Titânio/toxicidade
5.
Biol Trace Elem Res ; 200(12): 5172-5187, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35013891

RESUMO

Nanosized titanium dioxide (nano-TiO2) has been widely used in consumer products. It can cross the blood-testis barrier (BTB), and it has adverse effects on the male reproductive system. However, the specific mechanism has not been fully elucidated. The purpose of this study was to understand the role of the JNK signaling pathway in the apoptosis and abnormal expression of BTB junction proteins induced by nano-TiO2 in TM4 cells. After different concentration of nano-TiO2 treatments, the cell viability, apoptosis, mitochondrial membrane potential (Δψm), BTB junction proteins (Claudin-11, ZO-1, ß-catenin), apoptosis-related proteins (Bax, Bcl-2, cleaved caspase-9, cleaved caspase-3), and phosphorylated (p)-JNK protein were examined. The results showed that cell viability, apoptosis rates, Δψm, and apoptosis-related protein levels changed in a concentration-dependent manner. Cell viability decreased significantly from 100 µg/mL nano-TiO2 group. Apoptosis rates increased significantly from 150 µg/mL nano-TiO2 group, and Δψm decreased significantly from 150 µg/mL nano-TiO2 group. The protein levels of Bax, cleaved caspase-9, and cleaved caspase-3 increased significantly from 150 µg/mL nano-TiO2 group, and the protein level of Bcl-2 decreased significantly from 100 µg/mL nano-TiO2 group. The protein level of p-JNK increased significantly from 100 µg/mL nano-TiO2 group. Abnormal expression of ZO-1 and ß-catenin started from 150 µg/mL nano-TiO2 group, and abnormal expression of Claudin-11 started from 100 µg/mL nano-TiO2 group. Cells were treated with JNK inhibitor SP100625 to determine whether the changes of the above indicators in the concentration of 150 µg/mL nano-TiO2 group can be reversed. We found that SP100625 at 20 µM significantly reversed these effects. These results highlighted that nano-TiO2 could activate the JNK signaling pathway to induce mitochondria-mediated apoptosis and abnormal expression of BTB junction proteins in TM4 cells.


Assuntos
Barreira Hematotesticular , Sistema de Sinalização das MAP Quinases , Apoptose , Caspase 3 , Caspase 9 , Claudinas , Humanos , Masculino , Proteínas Proto-Oncogênicas c-bcl-2 , Titânio/farmacologia , Proteína X Associada a bcl-2 , beta Catenina
6.
Biol Trace Elem Res ; 200(6): 2825-2837, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34396458

RESUMO

PURPOSE: The research was carried out to investigate the possible ameliorative effect of lycopene on TiO2 NPs-induced male reproductive toxicity and explore the possible mechanism. METHODS: Ninety-six healthy male Institute of Cancer Research (ICR) mice were equally divided into eight groups (control group, 50 mg/kg TiO2 NPs group, 5 mg/kg LYC group, 20 mg/kg LYC group, 40 mg/kg LYC group, 50 mg/kg TiO2 NPs + 5 mg/kg LYC group, 50 mg/kg TiO2 NPs + 20 mg/kg LYC group, 50 mg/kg TiO2 NPs + 40 mg/kg LYC group), and the mice were treated by intragastric administration every day for 30 days in this research. Sperm parameters, testicular histopathology, oxidant and antioxidant enzymes, and cell apoptosis-related protein expression in the testicular tissue were analyzed. RESULTS: The results showed that TiO2 NPs exposure significantly decreased sperm count and motility, and TiO2 NPs also increased sperm malformation in the epididymis; these characteristics were improved when co-administration with LYC. Testicular histopathological lesions like disorder of germ cells arrange, detachment, atrophy, and vacuolization were observed after TiO2 NPs exposure, and these abnormalities were effectively ameliorated by co-administration with LYC. Oxidative stress was induced by TiO2 NPs exposure as evidenced by increased the level of MDA and decreased the activity of SOD as well as the level of anti-O2-, and these alterations were effectively prevented by co-administration with LYC. LYC also alleviated TiO2 NPs-induced germ cell apoptosis by inhibiting mitochondrial apoptotic pathway, as shown by the upregulation of Bcl-2, the downregulation of Bax, Cleaved Caspase 3, and Cleaved Caspase 9. CONCLUSION: LYC could ameliorate TiO2 NPs-induced testicular damage via inhibiting oxidative stress and apoptosis, which could be used to alleviate the testicular toxicity associated with TiO2 NPs intake.


Assuntos
Nanopartículas , Estresse Oxidativo , Animais , Apoptose , Licopeno/farmacologia , Masculino , Camundongos , Titânio/toxicidade
7.
Toxicol Mech Methods ; 32(1): 1-17, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34350812

RESUMO

Silica nanoparticles (SiNPs) have been widely used in nanotechnology, and more attention has been paid to their safety evaluation. However, there are still inconsistent conclusions about the genotoxicity of SiNPs. A systematic review was conducted to explore whether SiNPs have genotoxicity followed by a meta-analysis of in vivo and in vitro murine genotoxicity tests. A total of 26 eligible studies were identified in this meta-analysis through a detailed process of inclusion and exclusion, which included 9 in vivo studies, 15 in vitro studies, and 2 in both. The results of in vitro studies showed that SiNPs exposure significantly increased the indicators of the comet assay, such as tail DNA content (T DNA%), tail length (TL), and olive tail moment (OTM). Indicators of mutagenicity had not been affected in vitro studies, such as mutation frequency (MF) and micronucleus (MN) frequency. There was a significant increase in MN frequency, but there was no influence on T DNA% in vivo. Results of subgroup analysis indicated that size and treatment time of SiNPs were the associated factors in vitro genotoxicity. The size of SiNPs, <21 nm, induced more DNA damage than larger sized SiNPs. It could induce MN formation when the treatment time of SiNPs was <12 h, and even more DNA damage when the exposure time over 12 h. SiNPs can induce genotoxicity both in vivo and in vitro. Comet assay may be more sensitive to detect in vitro genotoxicity, and MN frequency may be more suitable to detect in vivo genotoxicity.


Assuntos
Nanopartículas , Dióxido de Silício , Animais , Ensaio Cometa , Dano ao DNA , Camundongos , Nanopartículas/toxicidade , Nanotecnologia , Dióxido de Silício/toxicidade
8.
Biol Trace Elem Res ; 199(8): 2961-2971, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32990870

RESUMO

Some studies have found that nano-sized titanium dioxide (nano-TiO2) has adverse effects on the male reproductive system. Blood-testis barrier (BTB), as one of the tightest blood-tissue restriction, is crucial to the male reproductive system. However, the potential effects on BTB and signaling pathway changes in testis tissue induced by nano-TiO2 remain poorly understood. Therefore, in this study, 60 Institute of Cancer Research mice were divided randomly into four groups (per group = 15). The mice of four groups were intragastrically administered with 0, 10, 50, and 100 mg/kg BW nano-TiO2 respectively for 30 days to analyze the changes of BTB structure, BTB-related proteins, and MAPK signal pathways. Besides, testosterone level, estradiol level, and sperm parameter (sperm count, sperm motility, and sperm malformation rate) changes were also studied in this research. The results indicated that nano-TiO2 could induce the BTB structural damage and accompanied by the BTB main protein (ZO-1, Claudin-11, and F-actin) elevation of irritability. Nano-TiO2 could also activate the MAPK signaling pathways (p38, JNK, and ERK) of mice testis tissue. The testosterone and estradiol levels in serum reduced. Besides when the mice were administered with nano-TiO2, we also found the sperm motility rate decreased, and sperm malformation increased. The above changes may be associated with BTB damage and the activation of MAPK signaling pathways, thereby causing male reproductive dysfunction.


Assuntos
Barreira Hematotesticular , Motilidade dos Espermatozoides , Animais , Humanos , Masculino , Camundongos , Transdução de Sinais , Testículo , Titânio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...