Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 134(5): 550-568, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38323433

RESUMO

BACKGROUND: Doxorubicin is an effective chemotherapeutic agent, but its use is limited by acute and chronic cardiotoxicity. Exercise training has been shown to protect against doxorubicin-induced cardiotoxicity, but the involvement of immune cells remains unclear. This study aimed to investigate the role of exercise-derived B cells in protecting against doxorubicin-induced cardiotoxicity and to further determine whether B cell activation and antibody secretion play a role in this protection. METHODS: Mice that were administered with doxorubicin (5 mg/kg per week, 20 mg/kg cumulative dose) received treadmill running exercise. The adoptive transfer of exercise-derived splenic B cells to µMT-/- (B cell-deficient) mice was performed to elucidate the mechanism of B cell regulation that mediated the effect of exercise. RESULTS: Doxorubicin-administered mice that had undergone exercise training showed improved cardiac function, and low levels of cardiac apoptosis, atrophy, and fibrosis, and had reduced cardiac antibody deposition and proinflammatory responses. Similarly, B cell pharmacological and genetic depletion alleviated doxorubicin-induced cardiotoxicity, which phenocopied the protection of exercise. In vitro performed coculture experiments confirmed that exercise-derived B cells reduced cardiomyocyte apoptosis and fibroblast activation compared with control B cells. Importantly, the protective effect of exercise on B cells was confirmed by the adoptive transfer of splenic B cells from exercised donor mice to µMT-/- recipient mice. However, blockage of Fc gamma receptor IIB function using B cell transplants from exercised Fc gamma receptor IIB-/- mice abolished the protection of exercise-derived B cells against doxorubicin-induced cardiotoxicity. Mechanistically, we found that Fc gamma receptor IIB, an important B cell inhibitory receptor, responded to exercise and increased B cell activation threshold, which participated in exercise-induced protection against doxorubicin-induced cardiotoxicity. CONCLUSIONS: Our results demonstrate that exercise training protects against doxorubicin-induced cardiotoxicity by upregulating Fc gamma receptor IIB expression in B cells, which plays an important anti-inflammatory role and participates in the protective effect of exercise against doxorubicin-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Miócitos Cardíacos , Camundongos , Animais , Cardiotoxicidade/metabolismo , Miócitos Cardíacos/metabolismo , Doxorrubicina/toxicidade , Apoptose
2.
Adv Exp Med Biol ; 1396: 157-176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36454466

RESUMO

Muscle atrophy is a multifactor syndrome, which not only decreases the patients' quality of life significantly but also increases the morbidity and mortality of patients with chronic diseases. At present, no effective clinical treatments for muscle atrophy except for exercise are available. The emerging field of genome editing is gaining momentum as it has shown great advantage in the treatment of various diseases, including muscle atrophy. In our current review, we systematically evaluate the etiology and related signaling pathways of muscle atrophy and discuss the application of genome editing in the treatment of muscle atrophy.


Assuntos
Edição de Genes , Qualidade de Vida , Humanos , Atrofia Muscular/genética , Atrofia Muscular/terapia , Exercício Físico , Movimento (Física)
3.
Front Cardiovasc Med ; 9: 858909, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402529

RESUMO

Ischemic heart disease is one of the biggest threats to human life in the world. Reperfusion therapy is an effective strategy to reduce infarct size and ischemic injury. However, reperfusion process may cause secondary myocardial injury which is defined as ischemia-reperfusion injury (IRI). Exploring potential therapeutic strategy to attenuate IRI is extremely important. Danlou tablet (Dan), a Chinese herbal compound consisting of ten herbs, has been identified to be protective for the heart. However, the mechanism of Dan-induced cardioprotection after acute reperfusion was unelucidated. In this study, to investigate the role and mechanism of Dan in myocardial IRI, we performed acute IRI modeling in mice and oxygen-glucose deprivation-reperfusion (OGD/R)-induced apoptosis in primary neonatal rat cardiomyocytes (NRCMs). We found that Dan had protective effect against acute IRI in mice, as evidenced by reduced infarct size, TUNEL-positive cardiomyocytes (CMs), and Bax/Bcl2 ratio and cleaved-caspase 3/caspase 3 ratio in vivo. Meanwhile, Dan inhibited OGD/R-induced apoptosis of NRCMs in vitro. Mechanistically, Dan could activate proliferator-activated receptor gamma (PPARγ) in both IRI hearts and OGD/R-stressed NRCMs, while inhibition of PPARγ attenuated the protective effect of Dan against IRI in vivo and OGD/R-induced CM apoptosis in vitro. These data reveal that Dan attenuates acute myocardial IRI and CM apoptosis through activating PPARγ. Our findings may extend the knowledge of Chinese medicine and provide potential strategy for the precise treatment of ischemic heart diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...