Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fitoterapia ; 178: 106180, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39128554

RESUMO

Four undescribed butanolides, linderangolides A-D (1-4), along with four known congeners, lincomolide A (5), (-)-epilitsenolide C2 (6), (-)-epilitsenolide C1 (7) and litseakolide H (8), were isolated from the roots of Lindera angustifolia. The planar structures of 1-4 were elucidated based on extensive spectroscopic analyses, the relative and absolute configurations of 1-4 were determined by the NOESY spectra and the comparison of calculated and experimental ECD. The cytotoxic activities of all isolated compounds were tested, 4 showed inhibitory activity against SGC-7 cells with IC50 value of 6.62 µM.

2.
Phytomedicine ; 132: 155585, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39068811

RESUMO

BACKGROUND: Hepatic fibrosis (HF) runs through multiple stages of liver diseases and promotes these diseases progression. Oxysophoridine (OSR), derived from Sophora alopecuroides l., is a bioactive alkaloid that has been reported to antagonize alcoholic hepatic injury. However, whether OSR suppresses HF and the mechanisms involved in Nrf2 remain unknown. PURPOSE: Since the dysregulation of inflammation and oxidative stress is responsible for the excessive accumulation of extracellular matrix (ECM) and fibrosis in the liver. We hypothesized that OSR may attenuate HF by inhibiting inflammation and oxidative stress through activating Nrf2 signaling. METHODS: In this study, we employed LPS-stimulated HSC-T6 cells, RAW264.7 cells, and a CCl4-induced C57BL/6 mouse fibrotic model to evaluate its suppressing inflammation and oxidative stress, as well as fibrosis. RESULTS: The result showed that OSR significantly reduced α-SMA and TGF-ß1 at a low dose of 10 µM in vitro and at a dose of 50 mg/kg in vivo, which is comparable to Silymarin, the only Chinese herbal active ingredient that has been marketed for anti-liver fibrosis. Moreover, OSR effectively suppressed the expression of iNOS at a dose of 10 µM and COX-2 at a dose of 40 µM, respectively. Furthermore, OSR demonstrated inhibitory effects on the IL-1ß, IL-6, and TNF-α in vitro and almost extinguished cytokine storm in vivo. OSR exhibited antioxidative effects by reducing MDA and increasing GSH, thereby protecting the cell membrane against oxidative damage and reducing LDH release. Moreover, OSR effectively upregulated the protein levels of Nrf2, HO-1, and p62, but decreased p-NF-κB p65, p-IκBα, and Keap1. Alternatively, mechanisms involved in Nrf2 were verified by siNrf2 interference, siNrf2 interference revealed that the anti-fibrotic effect of OSR was attributed to its activation of Nrf2. CONCLUSION: The present study provided an effective candidate for HF involved in both activation of Nrf2 and blockage of NF-κB, which has not been reported in the published work. The present study provides new insights for the identification of novel drug development for HF.


Assuntos
Alcaloides , Cirrose Hepática , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , NF-kappa B , Estresse Oxidativo , Transdução de Sinais , Sophora , Animais , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Cirrose Hepática/tratamento farmacológico , Alcaloides/farmacologia , NF-kappa B/metabolismo , Células RAW 264.7 , Masculino , Transdução de Sinais/efeitos dos fármacos , Sophora/química , Inflamação/tratamento farmacológico , Tetracloreto de Carbono , Ratos , Fator de Crescimento Transformador beta1/metabolismo
3.
Fitoterapia ; 177: 106090, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906388

RESUMO

A chemical investigation of the aerial parts of Piper sarmentosum resulted in the isolation and identification of 14 amide alkaloids, including three new amide alkaloids, pipersarmenoids A - C (1-3), three new natural amide alkaloids, pipersarmenoids D - F (4-6), and 8 known analogues, N-p-coumaroyltyramine (7), piperlotine C (8), piperlotine D (9), pellitorine (10), sarmentine (11), aurantiamide acetate (12), 1-cinnamoyl pyrrolidine (13) and sarmentamide B (14). Their structures were determined by spectroscopic analysis including HRESIMS and 1D and 2D NMR. The cytotoxicity, neuroinflammation-inhibiting and acetylcholinesterase (AChE) inhibitory activities of those compounds were tested. Compounds 1, 2 and 12 inhibited NO production induced by LPS in BV2 cells with IC50 values of 9.36, 12.53 and 10.77 µM, respectively. Moreover, 1, 2, 7 and 11 showed moderate inhibitory activity on AChE with IC50 values ranging from 37.56 to 48.84 µM.


Assuntos
Alcaloides , Inibidores da Colinesterase , Compostos Fitoquímicos , Piper , Componentes Aéreos da Planta , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Alcaloides/química , Piper/química , Estrutura Molecular , Animais , Camundongos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/isolamento & purificação , Componentes Aéreos da Planta/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Linhagem Celular , Amidas/farmacologia , Amidas/isolamento & purificação , Amidas/química , Óxido Nítrico/metabolismo , China , Microglia/efeitos dos fármacos , Ácidos Graxos Insaturados , Alcamidas Poli-Insaturadas
4.
Biosci Biotechnol Biochem ; 88(7): 727-732, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38599635

RESUMO

The chemical investigation of the roots of Lindera glauca guided the isolation and identification of 3 new sesquiterpenoids, namely glaucatotones J-L (1-3), and one known congener, (1ß,5ß)-1-hydroxyguaia-4(15),11(13)-dieno-12,5-lactone (4). The structures of new compounds were established based on comprehensive spectrographic methods, mainly including 1D & 2D NMR and HRESIMS analyses, and the absolute configurations were further confirmed by the comparison of experimental and calculated electronic circular dichroism. The cytotoxicity activities of isolates were evaluated, and the results showed that they have moderate cytotoxic activities.


Assuntos
Lindera , Raízes de Plantas , Sesquiterpenos , Raízes de Plantas/química , Lindera/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/toxicidade , Humanos , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Dicroísmo Circular , Estrutura Molecular , Espectroscopia de Ressonância Magnética
5.
Bioorg Chem ; 144: 107135, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281383

RESUMO

Glaucatotones A - I, nine new guaiane-type sesquiterpenoids, along with two reported compounds, namely (1ß,5ß)-1-hydroxyguaia-4(15),11(13)-dieno-12,5-lactone (10) and pseudoguaianelactone C (11), were isolated from the roots of Lindera glauca. The structures and absolute configurations of these compounds were elucidated by extensive spectroscopic analyses, single-crystal X-ray diffraction, and comparison of experimental and calculated electronic circular dichroism (ECD) data. Structurally, glaucatotone A (1) is characterized as a dihomosesquiterpenoid with an unprecedented 5/5/7/6 ring system. A pair of enantiomers, (±)-glaucatotone B (2a/2b), represent the first rearranged norsesquiterpenoid with a (cyclopentylmethyl)cyclohexane skeleton. 3 is defined as a dinorsesquiterpenoid possessing a 5/7/5 ring system. 4-6 are three guaiane-type norsesquiterpenoids. In vitro bioactivity, 2a selectively inhibited Bcap-37 with IC50 value of 5.60 µM, and 9 selectively inhibited Du-145 with IC50 value of 5.52 µM. The anti-inflammatory activity of 1-9 were tested, and of these compounds, 1, 2a, 2b and 7 exhibited potent inhibitory effects.


Assuntos
Lindera , Sesquiterpenos , Estrutura Molecular , Lindera/química , Sesquiterpenos de Guaiano/farmacologia , Anti-Inflamatórios/farmacologia , Sesquiterpenos/farmacologia , Sesquiterpenos/química
6.
Biomed Pharmacother ; 171: 116071, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183741

RESUMO

Sphingolipids (SPLs) represent a highly diverse and structurally complex lipid class. The discussion of SPL metabolism-related issues is of importance in understanding the neuropathological progression of Alzheimer's disease (AD). AD is characterized by the accumulation of extracellular deposits of the amyloid ß-peptide (Aß) and intraneuronal aggregates of the microtubule-associated protein tau. Critical roles of Aß oligomer deposited and ganglioside GM1 could be formed as "seed" from insoluble GAß polymer in initiating the pathogenic process, while tau might also mediate SPLs and their toxicity. The interaction between ceramide and α-Synuclein (α-Syn) accelerates the aggregation of ferroptosis and exacerbates the pathogenesis of AD. For instance, reducing the levels of SPLs can mitigate α-Syn accumulation and inhibit AD progression. Meanwhile, loss of SPLs may inhibit the expression of APOE4 and confer protection against AD, while the loss of APOE4 expression also disrupts SPLs homeostasis. Moreover, the heightened activation of sphingomyelinase promotes the ferroptosis signaling pathway, leading to exacerbated AD symptoms. Ferroptosis plays a vital role in the pathological progression of AD by influencing Aß, tau, APOE, and α-Syn. Conversely, the development of AD also exacerbates the manifestation of ferroptosis and SPLs. We are compiling the emerging techniques (Derivatization and IM-MS) of sphingolipidomics, to overcome the challenges of AD diagnosis and treatment. In this review, we examined the intricate neuro-mechanistic interactions between SPLs and Aß, tau, α-Syn, APOE, and ferroptosis, mediating the onset of AD. Furthermore, our findings highlight the potential of targeting SPLs as underexplored avenue for devising innovative therapeutic strategies against AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4 , Esfingolipídeos , Proteínas tau/metabolismo , Ceramidas
7.
Rev Bras Farmacogn ; 33(3): 514-522, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151218

RESUMO

Influenza is an infectious acute respiratory disease with complications and a high mortality rate; the effective medicines for influenza therapy are limited. "Huanglian" or Coptidis Rhizoma, Coptis chinensis Franch., Ranunculaceae, and "ganjiang" or Zingiberis Rhizoma, Zingiber officinale Roscoe, Zingiberaceae, combination is clinically used for treating respiratory diseases. HPLC was applied for the quantification of berberine hydrochloride (1.101 mg/ml) and 6-gingerol (38.41 µg/ml) in the H2O-soluble extract of the herbal formulation. In this study, the effect of "huanglian"- "ganjiang" extract on influenza virus H1N1-induced acute pulmonary inflammation was evaluated, in addition to the investigation of its anti-influenza mechanism in a mouse model. The analyzed herbal combination inhibited the expression of cytokine IL-6 and stimulated the expression of IL-2 in the serum of influenza virus-infected mice. Meanwhile, the herbal combination downregulated the gene and protein expression levels of TLR3, TLR7, MyD88, RIG-I, MAVS, TRAF3, and NF-κB p65, which are key targets of toll-like and RIG-I-like receptor signaling pathways in mice. In addition, the herbal combination could also promote the combination of intracellular autophagosomes and lysosomes in autophagosome-lysosome formation and improve impaired fusion of autophagosomes and lysosomes by influenza virus. This study suggested that the "huanglian"- "ganjiang" extract may be a candidate therapeutic strategy for the treatment of H1N1 influenza. Supplementary Information: The online version contains supplementary material available at 10.1007/s43450-023-00372-z.

8.
Anal Sci ; 39(8): 1233-1247, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37037970

RESUMO

The quantitative analysis of near-infrared spectroscopy in traditional Chinese medicine has still deficiencies in the selection of the measured indexes. Then Paeoniae Radix Alba is one of the famous "Eight Flavors of Zhejiang" herbs, however, it lacks the pharmacodynamic support, and cannot reflect the quality of Paeoniae Radix Alba accurately and reasonably. In this study, the spectrum-effect relationship of the anti-inflammatory activity of Paeoniae Radix Alba was established. Then based on the obtained bioactive component groups, the genetic algorithm, back propagation neural network, was combined with near-infrared spectroscopy to establish calibration models for the content of the bioactive components of Paeoniae Radix Alba. Finally, three bioactive components, paeoniflorin, 1,2,3,4,6-O-pentagalloylglucose, and benzoyl paeoniflorin, were successfully obtained. Their near-infrared spectroscopy content models were also established separately, and the validation sets results showed the coefficient of determination (R2 > 0.85), indicating that good calibration statistics were obtained for the prediction of key pharmacodynamic components. As a result, an integrated analytical method of spectrum-effect relationship combined with near-infrared spectroscopy and deep learning algorithm was first proposed to assess and control the quality of traditional Chinese medicine, which is the future development trend for the rapid inspection of traditional Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Espectroscopia de Luz Próxima ao Infravermelho , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Controle de Qualidade , Redes Neurais de Computação
9.
Chem Biodivers ; 20(3): e202201054, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36790137

RESUMO

Eucommia ulmoides Oliver is a dioecious plant, which plays an important role in traditional Chinese medicine. However, there has not yet been any research on male and female E. ulmoides. The UPLC fingerprints and OPLS-DA approach were able to quickly and easily identify and quantify E. ulmoides and differentiate between the male and female fingerprints. In this study, we optimized the UPLC conditions and analyzed them to investigate fingerprints of twenty-four extracts of Eucommiae Cortex (EC) and twenty-four extracts of Eucommiae Folium (EF) under optimal conditions. It was demonstrated that thirteen and twelve substances were possible chemical markers for EC and EF male and female discrimination and that the level of these markers - chlorogenic acid and protocatechuic acid - was many times higher in male than in female. This approach offered a reference for quality control and precise treatment of male and female E. ulmoides in the clinic.


Assuntos
Medicamentos de Ervas Chinesas , Eucommiaceae , Medicamentos de Ervas Chinesas/química , Eucommiaceae/química , Medicina Tradicional Chinesa , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão/métodos
10.
Talanta ; 256: 124264, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689895

RESUMO

Gangliosides (GAs) and sulfatides (STs) are acidic glycosphingolipids that are particularly abundant in the nervous system and are closely related to aging and neurodegenerative disorders. To explore their roles in brain diseases, in-depth molecular profiling, including structural variations of sphingoid backbone, fatty acyl group, and sugar chain of GAs and STs was performed. A total of 210 GAs and 38 STs were characterized in the inferior frontal gyrus (IFG) of human brain, with 90 GAs discovered in brain tissues for the first time. Influential MS parameters for detecting GAs and STs in multiple reaction monitoring (MRM) mode were systematically examined and optimized to minimize in-source fragmentation, resulting in remarkable signal intensity enhancement for GAs and STs, especially for polysialylated species. To eliminate analytical variations, isotopic interference-free internal standards were prepared by simple and fast reduction reaction. The final established method facilitated the simultaneous quantitation of 184 GAs and 30 STs from 25 subtypes, which represents the highest number of GAs quantitated among all quantitation methods recorded in literature so far. The method was further validated and applied to reveal the aberrant change of GAs and STs in the IFG of 12 Alzheimer's disease (AD) patients. Four GAs exhibited high classification capacity for AD (AUC ≥0.80) and were thereby considered the most promising signatures for AD. These findings suggested the close correlation between GAs and the pathogenesis of AD, highlighting the achievements of our robust method for investigating the roles of GAs and STs in various physiological states and diseases.


Assuntos
Doença de Alzheimer , Gangliosídeos , Humanos , Sulfoglicoesfingolipídeos/química , Cromatografia Líquida de Alta Pressão/métodos , Encéfalo
11.
Chem Phys Lipids ; 225: 104813, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31442411

RESUMO

Gangliosides (GAs) and sulfatides (STs) are major acidic glycosphingolipids (GSLs) that are particularly abundant in the central nervous system and associated with substantial neurodegenerative diseases. In this study, we developed an improved approach for the comprehensive profiling of GAs and STs in rat brain tissues by adopting a pre-fractionation step before the LC-MS analysis. The pre-fractionation step allows the efficient enrichment of different types of acidic GSLs and the removal of high-abundance interferences, thereby greatly enhanced the detection sensitivity and accuracy of low-abundance acidic GSLs. By using this improved approach, a total of 340 acidic GSLs (from 281 compositions) were characterized in rat brain tissues, including 277 GAs (from 230 compositions) and 63 STs (from 51 compositions), among which 57 GAs and 14 STs were novel acidic GSLs that have not been reported previously. This study represented the most comprehensive profiling of acidic GSLs in rat brain tissues. The result of this study greatly enlarged our understanding of the structural diversity of natural acidic GSLs, and provided important chemical information for the exploration of biological function of acidic GSLs in the central nervous system.


Assuntos
Encéfalo/citologia , Gangliosídeos/química , Sulfoglicoesfingolipídeos/química , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Gangliosídeos/isolamento & purificação , Masculino , Espectrometria de Massas , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Sulfoglicoesfingolipídeos/isolamento & purificação , Propriedades de Superfície
12.
Pharmacol Res ; 137: 76-88, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30227260

RESUMO

T lymphocytes produced by the thymus are essential mediators of immunity. Accelerated thymic atrophy appears in the patients with administration of glucocorticoids (GCs) which are commonly-used drugs to treat autoimmune and infectious diseases, leading to dysregulation of immunity with manifestation of progressive diminution of new T cell production. However, there is no ideal method to overcome such side effects of GCs. In the current study, we proposed a composition of dexamethasone (DEX) and dihydromyricetin (DMY) derived from a medicinal plant, which could protect from DEX-induced thymus damage and simultaneously enhance the anti-inflammatory effect of DEX. In the current study, we found that DEX-damaged thymic cellularity and architecture, reduced thymocyte numbers, induced thymocyte apoptosis and dropped CD4+ and CD8+ double positive T cell numbers in thymus which was effectively improved by co-treatment with DMY. Quantification of signal joint TCR delta excision circles (TRECs) and Vß TCR spectratyping analysis were employed to determine the thymus function with indicated treatments. The results showed that DEX-impaired thymus output and decreased TCR cell diversity which was ameliorated by co-treatment with DMY. iTRAQ 2D LC-MS/MS was applied to analyze the proteomic profiling of thymus of mice treated with or without indicated agents, followed by informatics analysis to identify the correlated signaling pathway. After validated by Western blotting and Real-time PCR, we found that PPARγ-associated fatty acid metabolism was increased in the thymic tissues of the animals treated with DMY plus DEX than the animals treated with DEX alone. The agonist and antagonist of PPARγ were further employed to verify the role of PPARγ in the present study. Furthermore, DMY demonstrated a synergistic effect with co-administration of DEX on suppressing inflammation in vivo. Collectively, DMY relieved thymus function damaged by DEX via regulation of PPARγ-associated fatty acid metabolism. Our findings may provide a new strategy on protection of thymus from damage caused by GCs by using appropriate adjuvant natural agents through up-regulation of PPARγ-associated fatty acid metabolism.


Assuntos
Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Ácidos Graxos/metabolismo , Flavonóis/farmacologia , Glucocorticoides/farmacologia , PPAR gama/metabolismo , Timo/efeitos dos fármacos , Animais , Anti-Inflamatórios/uso terapêutico , Dexametasona/uso terapêutico , Quimioterapia Combinada , Flavonóis/uso terapêutico , Glucocorticoides/uso terapêutico , Hipersensibilidade Tardia/tratamento farmacológico , Camundongos , Timo/metabolismo , Regulação para Cima/efeitos dos fármacos
13.
Pharm Biol ; 53(5): 773-80, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25472720

RESUMO

CONTEXT: Portulacerebroside A (PCA) is a novel cerebroside compound isolated from Portulaca oleracea L. (Portulacaceae), an edible and medicinal plant distributed in the temperate and tropical zones worldwide. OBJECTIVE: This study investigates the effects of PCA in human liver cancer HCCLM3 cells on metastasis and invasion. MATERIALS AND METHODS: After the cells were treated with PCA (2.5, 5, and 10 µg/ml) for 6, 12, 24, or 48 h, adhesion, transwell invasion, and scratch tests were conducted and cell functions were evaluated. Western blot and FQ-RT-PCR assays explored the mechanism of PCA-inhibited invasion and metastasis in the cells. RESULTS: The adhesion rate of the cells was suppressed at 0.5 h (79.4 ± 1.0, 68.7 ± 1.3, and 58.1 ± 1.3%, versus 100 ± 1.5% in the control), 1 h (78.2 ± 1.2, 70.9 ± 1.6, and 55.4 ± 1.9%, versus 100 ± 1.2% in the control), and 1.5 h (71.6 ± 1.1, 62.3 ± 0.9, and 50.4 ± 0.9%, versus 100 ± 1.1% in the control). The 24 h invasion ability was decreased (356.6 ± 11.2, 204.0 ± 17.6, and 113.0 ± 9.5%, versus 443.6 ± 15.4% in the control). The migration capability was also restrained by PCA for 24 h (324.8 ± 25.4, 250.4 ± 21.0, and 126.3 ± 10.1, versus 381.6 ± 30.6 in the control) and 48 h (470.3 ± 34.3, 404.0 ± 19.7, and 201.0 ± 15.4, versus 752.0 ± 63.6 in the control). There was an increase in the mRNA and protein expression levels of TIMP-2 and nm23-H1, inhibition in the mRNA expression of MTA1, MMP-2, and MMP-9, and suppression in the protein expression of MTA1, RhoA, Rac1/Cdc42, MMP-2, but not RhoC and MMP-9. CONCLUSION: PCA suppresses the invasion and metastasis of HCCLM3 cells possibly by modulation of the mRNA and protein expression of related parameters. This is the first study to reveal a new potential therapeutic application of PCA in antimetastatic therapy for liver cancer.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Glucosilceramidas/uso terapêutico , Neoplasias Hepáticas/prevenção & controle , Extratos Vegetais/uso terapêutico , Portulaca , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Glucosilceramidas/isolamento & purificação , Humanos , Neoplasias Hepáticas/patologia , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Extratos Vegetais/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA