Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 297(2): 485-494, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35146538

RESUMO

Eucommia ulmoides (E. ulmoides) is a deciduous perennial tree belonging to the order Garryales, and is known as "living fossil" plant, along with ginkgo (Ginkgo biloba), metaspaca (Metasequoia glyptostroboides) and dove tree (Davidia involucrata Baill). However, the genetic diversity and population structure of E. ulmoides are still  ambiguous nowdays. In this study, we re-sequenced the genomes of 12 E. ulmoides accessions from different major climatic geography regions in China to elucidate the genetic diversity, population structure and evolutionary pattern. By integration of phylogenetic analysis, principal component analysis and population structure analysis based on a number of high-quality SNPs, a total of 12 E. ulmoides accessions were clustered into four different groups. This result is consistent with their geographical location except for group samples from Shanghai and Hunan province. E. ulmoides accessions from Hunan province exhibited a closer genetic relationship with E. ulmoides accessions from Shanghai in China compared with other regions, which is also supported by the result of population structure analyses. Genetic diversity analysis further revealed that E. ulmoides samples in Shanghai and Hunan province were with higher genetic diversity than those in other regions in this study. In addition, we treated the E. ulmoides materials from Shanghai and Hunan province as group A, and the other materials from other places as group B, and then analyzed the evolutionary pattern of E. ulmoides. The result showed the significant differentiation (Fst = 0.1545) between group A and group B. Some candidate highly divergent genome regions were identified in group A by selective sweep analyses, and the function analysis of candidate genes in these regions showed that biological regulation processes could be correlated with the Eu-rubber biosynthesis. Notably, nine genes were identified from selective sweep regions. They were involved in the Eu-rubber biosynthesis and expressed in rubber containing tissues. The genetic diversity research and evolution model of E. ulmoides were preliminarily explored in this study, which laid the foundation for the protection of germplasm resources and the development and utilization of multipurpose germplasm resources in the future.


Assuntos
Eucommiaceae , China , Eucommiaceae/genética , Variação Genética/genética , Filogenia
2.
Front Plant Sci ; 13: 1029907, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699853

RESUMO

The leaves of Eucommia ulmoides contain various active compunds and nutritional components, and have successively been included as raw materials in the Chinese Pharmacopoeia, the Health Food Raw Material Catalogue, and the Feed Raw Material Catalogue. Core collections of E. ulmoides had been constructed from the conserved germplasm resources basing on molecular markers and morphological traits, however, the metabolite diversity and variation in this core population were little understood. Metabolite profiles of E. ulmoides leaves of 193 core collections were comprehensively characterized by GC-MS and LC-MS/MS based non-targeted metabolomics in present study. Totally 1,100 metabolites were identified and that belonged to 18 categories, and contained 120 active ingredients for traditional Chinese medicine (TCM) and 85 disease-resistant metabolites. Four leaf chemotypes of the core collections were established by integrated uses of unsupervised self-organizing map (SOM), supervised orthogonal partial least squares discriminant analysis (OPLS-DA) and random forest (RF) statistical methods, 30, 23, 43, and 23 chemomarkers were screened corresponding to the four chemotypes, respectively. The morphological markers for the chemotypes were obtained by weighted gene co-expression network analysis (WGCNA) between the chenomarkers and the morphological traits, with leaf length (LL), chlorophyll reference value (CRV), leaf dentate height (LDH), and leaf thickness (LT) corresponding to chemotypes I, II, III, and IV, respectively. Contents of quercetin-3-O-pentosidine, isoquercitrin were closely correlated to LL, leaf area (LA), and leaf perimeter (LP), suggesting the quercetin derivatives might influence the growth and development of E. ulmoides leaf shape.

3.
Sci Rep ; 11(1): 6900, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767357

RESUMO

The 2',3'-cycling ribonuclease (RNase) genes are catalysts of RNA cleavage and include the RNase T2 gene family. RNase T2 genes perform important roles in plants and have been conserved in the genome of eukaryotic organisms. In this study we identified 21 EURNS genes in Eucommia ulmoides Oliver (E. ulmoides) and analyzed their structure, chromosomal location, phylogenetic tree, gene duplication, stress-related cis-elements, and expression patterns in different tissues. The length of 21 predicted EURNS proteins ranged from 143 to 374 amino acids (aa), their molecular weight (MW) ranged from 16.21 to 42.38 kDa, and their isoelectric point (PI) value ranged from 5.08 to 9.09. Two classifications (class I and class III) were obtained from the conserved domains analysis and phylogenetic tree. EURNS proteins contained a total of 15 motifs. Motif 1, motif 2, motif 3, and motif 7 were distributed in multiple sequences and were similar to the conserved domain of RNase T2. EURNS genes with similar structure and the predicted EURNS proteins with conserved motif compositions are in the same group in the phylogenetic tree. The results of RT-PCR and transcription data showed that EURNS genes have tissue-specific expression and exhibited obvious trends in different developmental stages. Gene duplication analysis results indicated that segment duplication may be the dominant duplication mode in this gene family. This study provides a theoretical basis for research on the RNase T2 gene family and lays a foundation for the further study of EURNS genes.


Assuntos
Endorribonucleases/genética , Eucommiaceae/genética , Endorribonucleases/metabolismo , Eucommiaceae/enzimologia , Genoma de Planta , Família Multigênica , Filogenia
4.
ACS Omega ; 5(12): 6651-6660, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32258900

RESUMO

Pyrrole (Py) is easily agglomerated during the polymerization process, affecting its performance. In this paper, polypyrrole/monodispersed latex sphere (PPy/MLS) composites were prepared using in-situ polymerization for the adsorption of hexavalent chromium (Cr(VI)). The specific surface area of PPy/MLS (39.30 m2/g) was increased relative to that of PPy (24.82 m2/g), thus providing more effective adsorption sites. In addition, the adsorption properties of Cr(VI) under different conditions, including Py content, pH of the aqueous solution, and PPy/MLS dosage, were investigated to reveal the adsorption mechanism. The results showed that PPy/MLS possessed high Cr(VI) adsorption capacities when the Py content was 50 wt %. The maximum adsorption capacity was 343.64 mg/g at pH 2.0 and 25 °C. Remarkably, the adsorbents exhibited an excellent removal rate of Cr(VI) after three cycles of adsorption-desorption (over 99%), suggesting that the adsorbents had exceptional recyclability. Furthermore, the adsorption process followed quasi-second-order kinetics and Langmuir isothermal adsorption model. The high adsorption performance, sustainability, and cost-efficiency make this adsorbent a promising candidate for large-scale Cr(VI) contaminant removal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...