Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(1): 016605, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242672

RESUMO

Making nodal lines (NLs) deterministic is quite challenging because directly probing them requires bulk momentum resolution. Here, based on the general scattering theory, we show that the Bloch modes of the circuit metamaterials can be selectively excited with a proper source. Consequently, the transport measurement for characterizing the circuit band structure is momentum resolved. Facilitated by this bulk resolution, we systematically demonstrate the degeneracy conversions ruled by the relative homotopy, including the conversions between Weyl points (WPs) and NLs, and between NLs. It is experimentally shown that two WPs with opposite chirality in a two-band model surprisingly convert into an NL rather than annihilating. And the multiband anomaly (due to the delicate property) in the NL-to-NL conversions is also observed, which in fact is captured by the non-Abelian relative homotopy. Additionally, the physical effects owing to the conversions, like the Fermi arc connecting NLs and the parallel transport of eigenstates, are discussed as well. Other types of degeneracy conversions, such as those induced by spin-orbit coupling or symmetry breaking, are directly amenable to the proposed circuit platform.

2.
Micromachines (Basel) ; 14(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38004894

RESUMO

Optical imaging and photolithography hold the promise of extensive applications in the branch of nano-electronics, metrology, and the intricate domain of single-molecule biology. Nonetheless, the phenomenon of light diffraction imposes a foundational constraint upon optical resolution, thus presenting a significant barrier to the downscaling aspirations of nanoscale fabrication. The strategic utilization of surface plasmons has emerged as an avenue to overcome this diffraction-limit problem, leveraging their inherent wavelengths. In this study, we designed a pioneering and two-staged resolution, by adeptly compressing optical energy at profound sub-wavelength dimensions, achieved through the combination of propagating surface plasmons (PSPs) and localized surface plasmons (LSPs). By synergistically combining this plasmonic lens with parallel patterning technology, this economic framework not only improves the throughput capabilities of prevalent photolithography but also serves as an innovative pathway towards the next generation of semiconductor fabrication.

3.
J Chem Phys ; 158(24)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37377159

RESUMO

We use molecular dynamics simulations to study the frictional response of monolayers of the anionic surfactant sodium dodecyl sulfate and hemicylindrical aggregates physisorbed on gold. Our simulations of a sliding spherical asperity reveal the following two friction regimes: at low loads, the films show Amonton's friction with a friction force that rises linearly with normal load, and at high loads, the friction force is independent of the load as long as no direct solid-solid contact occurs. The transition between these two regimes happens when a single molecular layer is confined in the gap between the sliding bodies. The friction force at high loads on a monolayer rises monotonically with film density and drops slightly with the transition to hemicylindrical aggregates. This monotonous increase of friction force is compatible with a traditional plowing model of sliding friction. At low loads, the friction coefficient reaches a minimum at the intermediate surface concentrations. We attribute this behavior to a competition between adhesive forces, repulsion of the compressed film, and the onset of plowing.

4.
Biomimetics (Basel) ; 8(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36648825

RESUMO

Wall attachment has great potential in a broad range of applications such as robotic grasping, transfer printing, and asteroid sampling. Herein, a new type of underactuated bionic microspines gripper is proposed to attach to an irregular, rough wall. Experimental results revealed that the gripper, profiting from its flexible structure and underactuated linkage mechanism, is capable of adapting submillimeter scale roughness to centimeter scale geometry irregularity in both normal and tangential attachment. The rigid-flexible coupling simulation analysis validated that the rough adaptation was achieved by the passive deformation of the zigzag flexible structure, while the centimeter-scale irregularity adaptation come from the underactuated design. The attachment test of a spine confirmed that a 5 mm sliding distance of the spine tip on the fine brick wall promises a saturated tangential attachment force, which can guide the stiffness design of flexible structure and parameter selection of underactuated linkage. Furthermore, the developed microspines gripper was successfully demonstrated to grasp irregular rocks, tree trunks, and granite plates. This work presents a generally applicable and dexterous passive adaption design to achieve rough wall attachment for flat and curved objects, which promotes the understanding and application of wall attachment.

5.
Langmuir ; 39(1): 155-167, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36562758

RESUMO

Conventional methyl silicone oils have poor lubricating properties in boundary lubrication regions, particularly for ceramic/oxide point contact lubrication. In this study, the residues of various organic solvents on the surfaces of Si3N4 spheres/glass disks were used to determine their effect on the lubricating properties of silicone oil 200. The minute ethanol residues significantly enhanced the antifriction and antiwear properties of silicone oil. Compared to the blank sample, the coefficient of friction (COF) and wear volume of silicone oil 200 with the residual ethanol friction pair were reduced by >40% and >98%, respectively. Being immiscible with silicone oil, the minute ethanol residues also removed impurities from the glass surface and maintained a clean interface, thus effectively blocking direct interactions between the friction pair interfaces. In addition, the residual ethanol reduced the atomic force microscope probe-to-glass surface adhesive force in the silicone oil 200 environment, thus allowing it to maintain low COF and wear rates over a broader range of speeds, loads, and times. In contrast to previous work, this study is the first to effectively regulate the lubrication properties of silicone oil using a residual organic solvent. The findings further verified that the adsorption of vapor molecules can significantly alter the surface forces between interfaces. Thus, adjusting the adhesion force through trace amounts of organic solvent residues may provide novel research inputs, thereby guiding the expansion and scope of silicone oil lubrication applications.

6.
Opt Express ; 30(17): 30799-30810, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242177

RESUMO

The toroidal dipole is a peculiar electromagnetic excitation and has attracted increasing interests because of unusual radiation characteristics. However, the realization of toroidal moment requires complicated structure and are often disturbed by the conventional electric and magnetic multipoles. In this paper, we explore the electromagnetic properties of a simple dielectric disk illuminated by a focused radially polarized beam and demonstrate a pure toroidal dipolar response. A comprehensive approach is proposed to suppress other undesirable electromagnetic multipolar resonances step by step. The disk with optimized geometry is employed to construct an all-dielectric electric mirror dominated by toroidal dipolar resonance. And two kinds of anapole modes with total suppression of far-field radiation are investigated, which proves electric and magnetic non-radiating sources, respectively. Besides, by simultaneously introducing the asymmetry in both structure and incidence, a transformation from Mie-type mode to trapped mode is observed. Our study provides an opportunity to realize a unique pure toroidal dipole and may boost the relevant light-matter interaction.

7.
Opt Lett ; 47(18): 4798-4801, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107093

RESUMO

Rational design of the structure enables metamaterials to go beyond the ingredients and achieve unprecedented material properties. However, the realization of complicated and anisotropic electromagnetic parameters relies on the elaborate design of building blocks, and the mutual coupling between the anisotropic responses makes precise control of material parameters even more difficult. Here, we propose a metal-dielectric hybrid metamaterial, not only realizing the decoupling between anisotropic electromagnetic responses, but also establishing a one-to-one correspondence between independent geometric dimensions and anisotropic parameter components. Moreover, a tuning theoretical paradigm applied to an anisotropic and resonant system is further suggested, which proves that the operating frequency of this hybrid metamaterial can be easily adjusted by changing external fields. As prototypes, two typical and tunable microwave meta-devices, a transformation-optics cloak and a frequency splitter, are constructed with Ba-Sm-La-Ti ferroelectric ceramic and flexible printed circuit board, which successfully demonstrate our proposed design theory. This work provides a simple strategy for the design and fabrication of tunable anisotropic metamaterials, and boost the development of meta-devices toward practical application.

8.
Langmuir ; 38(32): 10043-10051, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35915968

RESUMO

Ceramic friction pairs lubricated with chlorinated-phenyl and methyl-terminated silicone oil (CPSO) systems have potential applications in the aerospace industry. In this study, the effects of the running-in process and temperature on the lubricating performance of CPSO were investigated. The superlubricity of Si3N4/sapphire lubricated with CPSO was realized at >190 °C after H+-ion running-in. The mechanism of this high-temperature superlubricity was investigated by determining the stable adsorption configurations and adsorption energies of CPSO on different surfaces using density functional theory calculations. Compared with that on the Si3N4 surface, the adsorption capacity of CPSO on the hydroxylated SiO2 surface generated by H+-ion running-in increased, whereas the steric hindrance decreased. The viscosity-temperature curve of CPSO was measured, wherein the viscosity and pressure-viscosity coefficient of CPSO considerably decreased with increasing temperature, leading to high-temperature superlubricity in a wide speed/load range. This is the first paper to report oil-based superlubricity at temperatures of 190 °C, or even higher-temperature conditions. Furthermore, it provides guidance for the use of ceramic-CPSO systems in high-temperature conditions, including in the aerospace industry.

9.
Science ; 377(6605): eabq8180, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35857644

RESUMO

Plant pathogen-activated immune signaling by nucleotide-binding leucine-rich repeat (NLR) receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain converges on Enhanced Disease Susceptibility 1 (EDS1) and its direct partners, Phytoalexin Deficient 4 (PAD4) or Senescence-Associated Gene 101 (SAG101). TIR-encoded nicotinamide adenine dinucleotide hydrolase (NADase) produces signaling molecules to promote exclusive EDS1-PAD4 and EDS1-SAG101 interactions with helper NLR subclasses. In this work, we show that TIR-containing proteins catalyze adenosine diphosphate (ADP)-ribosylation of adenosine triphosphate (ATP) and ADP ribose (ADPR) through ADPR polymerase-like and NADase activity, forming ADP-ribosylated ATP (ADPr-ATP) and ADPr-ADPR (di-ADPR), respectively. Specific binding of ADPr-ATP or di-ADPR allosterically promotes EDS1-SAG101 interaction with helper NLR N requirement gene 1A (NRG1A) in vitro and in planta. Our data reveal an enzymatic activity of TIRs that enables specific activation of the EDS1-SAG101-NRG1 immunity branch.


Assuntos
ADP-Ribosilação , Difosfato de Adenosina , Proteínas de Arabidopsis , Arabidopsis , Hidrolases de Éster Carboxílico , Proteínas de Ligação a DNA , Peptídeos e Proteínas de Sinalização Intracelular , Imunidade Vegetal , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/enzimologia , Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , NAD+ Nucleosidase/metabolismo
10.
Science ; 377(6605): eabq3297, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35857645

RESUMO

Plant nucleotide-binding leucine-rich repeat-containing (NLR) receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain sense pathogen effectors to enable TIR-encoded nicotinamide adenine dinucleotide hydrolase (NADase) activity for immune signaling. TIR-NLR signaling requires the helper NLRs N requirement gene 1 (NRG1), Activated Disease Resistance 1 (ADR1), and Enhanced Disease Susceptibility 1 (EDS1), which forms a heterodimer with each of its paralogs Phytoalexin Deficient 4 (PAD4) and Senescence-Associated Gene 101 (SAG101). Here, we show that TIR-containing proteins catalyze the production of 2'-(5''-phosphoribosyl)-5'-adenosine monophosphate (pRib-AMP) and diphosphate (pRib-ADP) in vitro and in planta. Biochemical and structural data demonstrate that EDS1-PAD4 is a receptor complex for pRib-AMP and pRib-ADP, which allosterically promote EDS1-PAD4 interaction with ADR1-L1 but not NRG1A. Our study identifies TIR-catalyzed pRib-AMP and pRib-ADP as a missing link in TIR signaling through EDS1-PAD4 and as likely second messengers for plant immunity.


Assuntos
Difosfato de Adenosina , Monofosfato de Adenosina , Proteínas de Arabidopsis , Arabidopsis , Hidrolases de Éster Carboxílico , Proteínas de Ligação a DNA , Imunidade Vegetal , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Arabidopsis/enzimologia , Arabidopsis/imunologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Catálise , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Imunidade Vegetal/genética
11.
Opt Express ; 30(6): 9841-9853, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299398

RESUMO

Surface plasmons (SPs) is the cornerstone in terahertz (THz) near-field photonics, which play crucial roles in the miniaturization and integration of functional devices. The excitation and manipulation of SPs, however, is currently restricted to electric SPs paradigm, while magnetic SPs receive less attention despite the importance of magnetic light-matter interactions. Here, a scheme is proposed to simultaneously convert the propagating waves in free space into magnetic and electric SPs using a single ultracompact device. First, a plasmonic structure composed of connected slit rings is designed and demonstrated to support both electric and magnetic SPs, which is ascribed to the two distinct eigenmodes of oscillating electrons and vortex currents, respectively. Second, with the assistance of an anisotropic and gradient metasurface, orthogonal linear polarized components of incident THz beams are coupled into different electric and magnetic SP channels with little crosstalk. Furthermore, by encoding two distinct polarization-dependent phase profile into the metasurface, it is shown that the resulting meta-device can individually tailor the wavefronts of magnetic and electric SPs, thus simultaneously engineering magnetic and electric near-field distributions. This work can pave the road to realize bi-channel and on-chip devices, and inspire more integrated functionalities especially related to near-field manipulations of magnetic SPs.

12.
Sci Adv ; 8(11): eabm0984, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35294236

RESUMO

Traction stress between contact objects is ubiquitous and crucial for various physical, biological, and engineering processes such as momentum transfer, tactile perception, and mechanical reliability. Newly developed techniques including electronic skin or traction force microscopy enable traction stress measurement. However, measuring the three-dimensional distribution during a dynamic process remains challenging. Here, we demonstrated a method based on stereo vision to measure three-dimensional traction stress with high spatial and temporal resolution. It showed the ability to image the two-stage adhesion failure of bionic microarrays and display the contribution of elastic resistance and adhesive traction to rolling friction at different contact regions. It also revealed the distributed sucking and sealing effect of the concavity pedal waves that propelled a snail crawling in the horizontal, vertical, and upside-down directions. We expected that the method would advance the understanding of various interfacial phenomena and greatly benefit related applications across physics, biology, and robotics.

13.
Adv Mater ; 33(40): e2102469, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34402556

RESUMO

The signal-to-noise ratio (SNR) is one of the most important criteria for evaluating the image quality in magnetic resonance imaging (MRI), and metasurfaces with unique electromagnetic properties provide a novel method for SNR improvement. However, their applications in clinical MRI are highly restricted by the inhomogeneous enhancement of the magnetic field and interference in the radio frequency (RF) transmitting field. In this study, an adaptive cylindrical wireless metasurface (ACWM) with homogeneous field enhancement and adaptive resonant modes is reported. The ACWM automatically switches its resonant modes between the partial (transmitting period) and whole (receiving period) resonance, which enables it to not only eliminate the interference in RF transmitting field, but also greatly enhance the SNR. Its adaptability also makes the ACWM applicable to all common clinical sequences without any modifications in the scan parameters. The SNR of MRI images of the human wrist, acquired with ACWM, is two to four times compared with the conventional coil. This work offers a practical control method to fill the scientific knowledge gaps between the preclinical research and medical applications for metasurfaces, and suggests a novel and powerful tool for diagnosing and evaluating human diseases.


Assuntos
Imageamento por Ressonância Magnética/métodos , Tecnologia sem Fio , Punho/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/instrumentação , Ondas de Rádio , Razão Sinal-Ruído
14.
Front Chem ; 9: 650880, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968900

RESUMO

Triboelectrochemical reactions occur on solid-liquid interfaces in wide range of applications when an electric field strong enough and a frictional stress high enough are simultaneously imposed on the interfaces. A characteristic of triboelectrochemical reactions is that not only the thermal energy but also the electrical and mechanical energies can activate, assist, or mitigate the solid-liquid interface chemical reactions, the products of which affect electrical and tribological behavior of the interfaces inversely. In previous studies, we have found that the coupling of frictional and electric effects could physically change the migration, adsorption, and desorption behaviors of the polar molecules, ions, or charged particles included in aqueous or nonaqueous base lubricant toward or away from the interfaces and thus control the boundary lubrication. Recently, we have found that the friction coefficient and surface appearance of some kinds of metals could also be modulated to some extent even in pure water or pure base oils under external electric stimulations. We attribute these changes to the triboelectrochemical reactions occurred when a strong external electric field is imposed on. Based on the effective collision model of chemical reactions, a chemical potential equation, which includes both electrical and mechanical contributions, has been derived. The proposed chemical potential equation can be used to explain the observed triboelectrochemical phenomenon in experiments. Based on the model, a novel method for oxidation coloring of the selected areas in metal surfaces is proposed. Together with the physical adsorption and desorption model of lubricant additives, the triboelectrochemical reaction model can well explain the phenomena of potential-controlled boundary lubrication in different lubrication systems and also provides a theoretical basis for other solid-liquid interface processes under the effects of electromechanical coupling.

15.
J Org Chem ; 86(11): 7326-7332, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34014082

RESUMO

A novel solvent-free, TfOH-promoted decyanative cyclization approach for the synthesis of 2,1-benzisoxazoles has been developed. The reactions are complete instantly at room temperature and result in the formation of the desired 2,1-benzisoxazoles in a 34-97% isolated yield.


Assuntos
Ciclização , Estrutura Molecular , Solventes
16.
J Colloid Interface Sci ; 599: 667-675, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33984761

RESUMO

HYPOTHESIS: Wettability effect has long been a concern in various aqueous lubrication systems including biological and industrial applications. The wettability may affect lubrication performance by changing interfacial viscosity or hydration force. The key point to reveal the mechanism is to design an ideal experimental system to exclude other bulk factors other than surface wettability. EXPERIMENTS: In this work, silicon surfaces with different treatments were used to study the single factor effect of wettability on aqueous lubrication. The normal and friction forces of these surfaces were quantified by atomic force microscopy (AFM) in water environment. The interfacial viscosity was evaluated according to the probe dynamic approaching process. Macroscale and microscale lubrication experiments of other materials were also conducted as verification and supplement. FINDINGS: A semi-quantitative relationship between friction and wettability was revealed and attributed to the competition between the attractive van der Waals interactions and wettability-dependent repulsive hydration interaction, which determined the strength of the adhesive interaction and dominated the sliding energy dissipation. The contribution of viscous effect of water was considered to be relatively minor. The findings provide an in-depth understanding of aqueous lubrication and outline important guidelines for tuning adhesion and friction.

17.
Langmuir ; 37(12): 3628-3636, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33733780

RESUMO

Liquid superlubricity results in a near-frictionless lubrication state, which can greatly reduce friction and wear under aqueous conditions. However, during the running-in process, a large number of abrasive particles are generated, and because these may lead to a breakdown in superlubricity performance, they should be effectively removed. In this paper, the morphology, size, and composition of abrasive particles were verified using scanning electron microscopy with energy-dispersive X-ray spectroscopy, and their influence on liquid superlubricity was explored through friction tests. Subsequently, different solvents were used to remove the abrasive particles, and the optimal cleaning process was determined by macroscopic tribo-tests and microscopic analysis. Finally, droplet-spreading experiments and a force-curve analysis were carried out to understand the abrasive-particle removal mechanism by different solvents. We found that SiO2 was the main component in the abrasive particles, and micron-sized SiO2 particles resulted in random "wave peaks" in the coefficient of friction and, thus, the superlubricity. Absolute ethanol + ultrapure water was determined to be the optimal solvent for effectively removing abrasive particles from friction-pair surfaces and helped the lubricant in exhibiting an ultralow friction coefficient for long periods of time. We proposed a "wedge" and "wrap" model to explain the abrasive-particle removal mechanism of different solvents. The SiO2 removal mechanism outlined in this study can be applied under aqueous conditions to improve the stability and durability of liquid superlubricity in practical engineering applications.

18.
J Med Chem ; 64(2): 925-937, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33459024

RESUMO

Osimertinib is a highly potent and selective third-generation epidermal growth factor receptor (EGFR) inhibitor, which provides excellent clinical benefits and is now a standard-of-care therapy for advanced EGFR mutation-positive non-small-cell lung cancer (NSCLC). However, AZ5104, a primary toxic metabolite of osimertinib, has caused unwanted toxicities. To address this unmet medical need, we initiated an iterative program focusing on structural optimizations of osimertinib and preclinical characterization, leading to the discovery of a highly potent, selective, and orally efficacious deuterated EGFR-targeting clinical candidate, dosimertinib. Preclinical studies revealed that dosimertinib demonstrated robust in vivo antitumor efficacy and favorable PK profiles, but with lower toxicity than osimertinib. These preclinical data support further clinical development of dosimertinib for the treatment of NSCLC. Dosimertinib has received official approval in China to initiate the phase I clinical trial (registration numbers: CXHL2000060 and CXHL2000061).


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Acrilamidas/metabolismo , Compostos de Anilina/metabolismo , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Cães , Descoberta de Drogas , Receptores ErbB/efeitos dos fármacos , Humanos , Indóis , Neoplasias Pulmonares/genética , Camundongos , Microssomos Hepáticos/metabolismo , Mutação/genética , Pirimidinas , Ratos , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Nanomaterials (Basel) ; 10(5)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413982

RESUMO

The near-field photolithography system has attracted increasing attention in the micro- and nano-manufacturing field, due to the high efficiency, high resolution, and the low cost of the scheme. Nevertheless, the low quality of the nano-patterns significantly limits the industrial application of this technology. Theoretical calculations showed that the reason for the poor nano-patterns is the sharp attenuation of the surface plasmon polaritons (SPPs) in the photoresist layer. The calculation results suggest that the waveguide mode, which is composed of the chromium-equivalent dielectric layer-aluminum, can facilitate the energy flux density distribution in the photoresist layer, resulting in the enhancement of the field intensity of SPPs in the photoresist layer. This reduces the linewidth of nano-patterns, while it enhances the pattern steepness. Eventually, the focusing energy of the photoresist layer can be improved. The finite-difference time-domain method was employed to simulate and verify the theoretical results. It is found that for the rotational near-field photolithography with 355 nm laser illumination, the linewidths of the nano-patterns with and without the aluminum reflector are 17.54 nm and 65.51 nm, respectively. The robustness of the experimental results implies that the application of the aluminum reflector enhances the focusing effect in the photoresist, which can broaden the application of the near-field photolithography.

20.
Langmuir ; 36(24): 6765-6774, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32460491

RESUMO

The development of new routes or materials to realize superlubricity under high contact pressure can result in energy-saving and reduction of emissions. In this study, superlubricity (µ = 0.0017) under extreme pressure (717 MPa, more than twice the previously reported liquid superlubricity) between the frictional pair of Si3N4/sapphire was achieved by prerunning-in with a H3PO4 (HP) solution followed by lubrication with an aqueous solution consisting of poly(vinyl alcohol) (PVA) and sodium chloride (NaCl). Under the same test condition, the aqueous PVA lubricant did not show superlubricity. Results of X-ray photoelectron spectroscopy and Raman spectroscopy indicate the formation of a PVA-adsorbed film at the frictional interface after lubrication with PVA but not after lubrication with PVA/NaCl, indicating competitive adsorption between hydrated Na+ ions and PVA molecules. The hydrated Na+ ions adsorbed preferentially to the solid surfaces, causing the transformation of the shear interface from a polymer film/polymer film to a solid/polymer film. Meanwhile, the hydrated Na+ ions also produced hydration repulsion force and induced low shear stress between the solid surfaces. Furthermore, NaCl increased the viscosity of the polymer lubricant, enhanced the hydrodynamic effect between interfaces, and decreased direct contact between the friction pair, causing a further reduction in friction. Thus, the superlubricity of the PVA/NaCl mixture is attributed to the combination of hydration and hydrodynamic effects. This study provides a novel route and mechanism for achieving extreme-pressure superlubricity at the macroscale, through the synergistic lubricating effect of hydrated ions and a polymer solution, propelling the industrial application of superlubricity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...