Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0289679, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603572

RESUMO

Allometric equations are often used to estimate plant biomass allocation to different tissue types from easier-to-measure quantities. Biomass allocation, and thus allometric equations, often differs by species and sometimes varies with nutrient availability. We measured biomass components for five nitrogen-fixing tree species (Robinia pseudoacacia, Gliricidia sepium, Casuarina equisetifolia, Acacia koa, Morella faya) and three non-fixing tree species (Betula nigra, Psidium cattleianum, Dodonaea viscosa) grown in field sites in New York and Hawaii for 4-5 years and subjected to four fertilization treatments. We measured total aboveground, foliar, main stem, secondary stem, and twig biomass in all species, and belowground biomass in Robinia pseudoacacia and Betula nigra, along with basal diameter, height, and canopy dimensions. The individuals spanned a wide size range (<1-16 cm basal diameter; 0.24-8.8 m height). For each biomass component, aboveground biomass, belowground biomass, and total biomass, we determined the following four allometric equations: the most parsimonious (lowest AIC) overall, the most parsimonious without a fertilization effect, the most parsimonious without canopy dimensions, and an equation with basal diameter only. For some species, the most parsimonious overall equation included fertilization effects, but fertilization effects were inconsistent across fertilization treatments. We therefore concluded that fertilization does not clearly affect allometric relationships in these species, size classes, and growth conditions. Our best-fit allometric equations without fertilization effects had the following R2 values: 0.91-0.99 for aboveground biomass (the range is across species), 0.95 for belowground biomass, 0.80-0.96 for foliar biomass, 0.94-0.99 for main stem biomass, 0.77-0.98 for secondary stem biomass, and 0.88-0.99 for twig biomass. Our equations can be used to estimate overall biomass and biomass of tissue components for these size classes in these species, and our results indicate that soil fertility does not need to be considered when using allometric relationships for these size classes in these species.


Assuntos
Acacia , Árvores , Humanos , Pré-Escolar , Betula , Biomassa , Nitrogênio
2.
Environ Entomol ; 52(4): 618-626, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37417547

RESUMO

Nitrogen (N) is a key nutrient required by all living organisms for growth and development, but is a limiting resource for many organisms. Organisms that feed on material with low N content, such as wood, might be particularly prone to N limitation. In this study, we investigated the degree to which the xylophagous larvae of the stag beetle Ceruchus piceus (Weber) use associations with N-fixing bacteria to acquire N. We paired acetylene reduction assays by cavity ring-down absorption spectroscopy (ARACAS) with 15N2 incubations to characterize rates of N fixation within C. piceus. Not only did we detect significant N fixation activity within C. piceus larvae, but we calculated a rate that was substantially higher than most previous reports for N fixation in insects. While taking these measurements, we discovered that N fixation within C. piceus can decline rapidly in a lab setting. Consequently, our results demonstrate that previous studies, which commonly keep insects in the lab for long periods of time prior to and during measurement, may have systematically under-reported rates of N fixation in insects. This suggests that within-insect N fixation may contribute more to insect nutrition and ecosystem-scale N budgets than previously thought.


Assuntos
Besouros , Animais , Ecossistema , Fixação de Nitrogênio , Nitrogênio , Insetos , Larva
3.
Oecologia ; 201(3): 827-840, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36877257

RESUMO

Symbiotic nitrogen (N)-fixing plants can enrich ecosystems with N, which can alter the cycling and demand for other nutrients. Researchers have hypothesized that fixed N could be used by plants and soil microbes to produce extracellular phosphatase enzymes, which release P from organic matter. Consistent with this speculation, the presence of N-fixing plants is often associated with high phosphatase activity, either in the soil or on root surfaces, although other studies have not found this association, and the connection between phosphatase and rates of N fixation-the mechanistic part of the argument-is tenuous. Here, we measured soil phosphatase activity under N-fixing trees and non-fixing trees transplanted and grown in tropical and temperate sites in the USA: two sites in Hawaii, and one each in New York and Oregon. This provides a rare example of phosphatase activity measured in a multi-site field experiment with rigorously quantified rates of N fixation. We found no difference in soil phosphatase activity under N-fixing vs. non-fixing trees nor across rates of N fixation, though we note that no sites were P limited and only one was N limited. Our results add to the literature showing no connection between N fixation rates and phosphatase activity.


Assuntos
Ecossistema , Árvores , Fixação de Nitrogênio , Solo , Monoéster Fosfórico Hidrolases , Nitrogênio
4.
Sci Total Environ ; 857(Pt 1): 159255, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36216052

RESUMO

Perennial grains, such as the intermediate wheatgrass (Thinopyrum intermedium) (IWG), may reduce negative environmental effects compared to annual grain crops. Their permanent, and generally larger, root systems are likely to retain nitrogen (N) better, decreasing harmful losses of N and improving fertilizer N use efficiency, but there have been no comprehensive N fertilizer recovery studies in IWG to date. We measured fertilizer N recovery with stable isotope tracers in crop biomass and soil, soil N mineralization and nitrification, and nitrate leaching in IWG and annual wheat in a replicated block field experiment. Nitrate leaching was drastically reduced in IWG (0.1 and 3.1 kg N ha-1 yr-1) in its third and fourth year since establishment, compared with 5.6 kg N ha-1 yr-1 in annual wheat and 41.0 kg N ha-1 yr-1 in fallow respectively. There were no differences in net N mineralization or nitrification between IWG and annual wheat, though there was generally more inorganic N in the soil profile of annual wheat. More 15N fertilizer was recovered in the straw and all depths of the roots and soils in IWG than annual wheat. However, annual wheat recovered much more 15N fertilizer in the seeds compared to IWG, which had lower grain yields. 15N-labeled fertilizer contributed little (<3 %) to nitrate-N in leachate, highlighting the role of soil microbes in regulating loss of current year fertilizer N. The large reduction in nitrate leaching demonstrates that perennial grains can reduce harmful nitrogen losses and offer a more sustainable alternative to annual grains.


Assuntos
Fertilizantes , Nitratos , Fertilizantes/análise , Nitratos/análise , Triticum , Agricultura , Solo , Nitrogênio/análise , Óxidos de Nitrogênio
5.
Nat Plants ; 8(3): 209-216, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115725

RESUMO

The future of the land carbon sink depends on the availability of nitrogen (N)1,2 and, specifically, on symbiotic N fixation3-8, which can rapidly alleviate N limitation. The temperature response of symbiotic N fixation has been hypothesized to explain the global distribution of N-fixing trees9,10 and is a key part of some terrestrial biosphere models (TBMs)3,7,8, yet there are few data to constrain the temperature response of symbiotic N fixation. Here we show that optimal temperatures for N fixation in four tree symbioses are in the range 29.0-36.9 °C, well above the 25.2 °C optimum currently used by TBMs. The shape of the response to temperature is also markedly different to the function used by TBMs (asymmetric rather than symmetric). We also show that N fixation acclimates to growing temperature (hence its range of optimal temperatures), particularly in our two tropical symbioses. Surprisingly, optimal temperatures were 5.2 °C higher for N fixation than for photosynthesis, suggesting that plant carbon and N gain are decoupled with respect to temperature. These findings may help explain why N-fixing tree abundance is highest where annual maximum temperatures are >35 °C (ref. 10) and why N-fixing symbioses evolved during a warm period in the Earth's history11,12. Everything else being equal, our findings indicate that climate warming will probably increase N fixation, even in tropical ecosystems, in direct contrast to past projections8.


Assuntos
Ecossistema , Fixação de Nitrogênio , Sequestro de Carbono , Temperatura , Árvores/fisiologia
6.
Am Nat ; 198(6): E198-E214, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762566

RESUMO

AbstractNitrogen-fixing trees are a major potential source of nitrogen in terrestrial ecosystems. The degree to which they persist in older forests has considerable implications for forest nitrogen budgets. We characterized nitrogen-fixing tree abundance across stand age in the contiguous United States and analyzed a theoretical model to help understand competitive outcomes and successional trajectories of nitrogen-fixing and nonfixing trees. Nitrogen-fixing tree abundance is bimodal in all regions except the northeastern United States, even in older forests, suggesting that competitive exclusion (including priority effects) is more common than coexistence at the spatial scale of our analysis. Our model analysis suggests conditions under which alternative competitive outcomes are possible and when they are transient (lasting decades or centuries) versus persistent (millennia). Critically, the timescale of the feedbacks between nitrogen fixation and soil nitrogen supply, which is thought to drive the exclusion of nitrogen-fixing trees through succession, can be long. Therefore, the long transient outcomes of competition are more relevant for real forests than the long-term equilibrium. Within these long-term transients, the background soil nitrogen supply is a major determinant of competitive outcomes. Consistent with the expectations of resource ratio theory, competitive exclusion is more likely at high and low nitrogen supply, while intermediate nitrogen supply makes coexistence or priority effects possible. However, these outcomes are modified by the nitrogen fixation strategy: obligate nitrogen fixation makes coexistence more likely than priority effects, compared with perfectly facultative fixation. These results advance our understanding of the successional trajectories of nitrogen-fixing trees and their effects on ecosystem development in secondary succession.


Assuntos
Ecossistema , Árvores , Florestas , Nitrogênio , Fixação de Nitrogênio , Solo
7.
Ecology ; 102(8): e03414, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34041747

RESUMO

Forests are a significant CO2 sink. However, CO2 sequestration in forests is radiatively offset by emissions of nitrous oxide (N2 O), a potent greenhouse gas, from forest soils. Reforestation, an important strategy for mitigating climate change, has focused on maximizing CO2 sequestration in plant biomass without integrating N2 O emissions from soils. Although nitrogen (N)-fixing trees are often recommended for reforestation because of their rapid growth on N-poor soil, they can stimulate significant N2 O emissions from soils. Here, we first used a field experiment to show that a N-fixing tree (Robinia pseudoacacia) initially mitigated climate change more than a non-fixing tree (Betula nigra). We then used our field data to parameterize a theoretical model to investigate these effects over time. Under lower N supply, N-fixers continued to mitigate climate change more than non-fixers by overcoming N limitation of plant growth. However, under higher N supply, N-fixers ultimately mitigated climate change less than non-fixers by enriching soil N and stimulating N2 O emissions from soils. These results have implications for reforestation, suggesting that N-fixing trees are more effective at mitigating climate change at lower N supply, whereas non-fixing trees are more effective at mitigating climate change at higher N supply.


Assuntos
Gases de Efeito Estufa , Árvores , Dióxido de Carbono/análise , Gases de Efeito Estufa/análise , Fixação de Nitrogênio , Óxido Nitroso/análise , Solo
8.
Ecology ; 102(8): e03415, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34042181

RESUMO

Nitrogen-fixing trees are an important nitrogen source to terrestrial ecosystems. While they can fuel primary production and drive carbon dioxide sequestration, they can also potentially stimulate soil emissions of nitrous oxide, a potent greenhouse gas. However, studies on the influence of nitrogen-fixing trees on soil nitrous oxide emissions have not been quantitatively synthesized. Here, we show in a meta-analysis that nitrogen-fixing trees more than double soil nitrous oxide emissions relative to non-fixing trees and soils. If planted in reforestation projects at the global scale, nitrogen-fixing trees could increase global soil nitrous oxide emissions from natural terrestrial ecosystems by up to 4.1%, offsetting climate change mitigation via reforestation by up to 4.4%.


Assuntos
Óxido Nitroso , Solo , Agricultura , Dióxido de Carbono/análise , Ecossistema , Nitrogênio , Óxido Nitroso/análise , Árvores
9.
New Phytol ; 231(5): 1758-1769, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34028829

RESUMO

The ability to fix nitrogen may confer a competitive advantage or disadvantage to symbiotic nitrogen-fixing plants depending on the availability of soil nitrogen and energy to fuel fixation. Understanding these costs and benefits of nitrogen fixation is critical to predicting ecosystem dynamics and nutrient cycling. We grew inoculated (with symbiotic bacteria) and uninoculated seedlings of Pentaclethra macroloba (a nitrogen-fixing tree species) both in isolation and with Virola koschnyi (a nonfixing species) under gradients of light and soil nitrogen to assess how the ability to fix nitrogen and fixation activity affect growth, biomass allocation, and responses to neighboring plants. Inoculation itself did not provide a growth advantage to nitrogen fixers, regardless of nitrogen limitation status. Higher nitrogen fixation rates increased biomass growth similarly for nitrogen-limited and nitrogen-saturated fixers. Nodule production was offset by reduced fine-root biomass for inoculated nitrogen fixers, resulting in no change in total belowground allocation associated with nitrogen fixation. Under nitrogen-limited conditions, inoculated nitrogen fixers partially downregulated fixation in the presence of a nonfixing neighbor. These results suggest that nitrogen fixation can provide a growth advantage, even under nitrogen-saturated conditions, and that nitrogen fixers may reduce fixation rates to minimize facilitation of neighbors.


Assuntos
Fabaceae , Árvores , Análise Custo-Benefício , Ecossistema , Nitrogênio , Fixação de Nitrogênio , Plântula , Solo
10.
Global Biogeochem Cycles ; 42(2)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32665747

RESUMO

Quantifying human impacts on the N cycle and investigating natural ecosystem N cycling depend on the magnitude of inputs from natural biological nitrogen fixation (BNF). Here, we present two bottom-up approaches to quantify tree-based symbiotic BNF based on forest inventory data across the coterminous US plus SE Alaska. For all major N-fixing tree genera, we quantify BNF inputs using (1) ecosystem N accretion rates (kg N ha-1 yr-1) scaled with spatial data on tree abundance and (2) percent of N derived from fixation (%Ndfa) scaled with tree N demand (from tree growth rates and stoichiometry). We estimate that trees fix 0.30-0.88 Tg N yr-1 across the study area (1.4-3.4 kg N ha-1 yr-1). Tree-based N fixation displays distinct spatial variation that is dominated by two genera, Robinia (64% of tree-associated BNF) and Alnus (24%). The third most important genus, Prosopis, accounted for 5%. Compared to published estimates of other N fluxes, tree-associated BNF accounted for 0.59 Tg N yr-1, similar to asymbiotic (0.37 Tg N yr-1) and understory symbiotic BNF (0.48 Tg N yr-1), while N deposition contributed 1.68 Tg N yr-1 and rock weathering 0.37 Tg N yr-1. Overall, our results reveal previously uncharacterized spatial patterns in tree BNF that can inform large-scale N assessments and serve as a model for improving tree-based BNF estimates worldwide. This updated, lower BNF estimate indicates a greater ratio of anthropogenic to natural N inputs, suggesting an even greater human impact on the N cycle.

11.
Oecologia ; 192(3): 671-685, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32052180

RESUMO

Warming-induced nutrient enrichment in the Arctic may lead to shifts in leaf-level physiological properties and processes with potential consequences for plant community dynamics and ecosystem function. To explore the physiological responses of Arctic tundra vegetation to increasing nutrient availability, we examined how a set of leaf nutrient and physiological characteristics of eight plant species (representing four plant functional groups) respond to a gradient of experimental nitrogen (N) and phosphorus (P) enrichment. Specifically, we examined a set of chlorophyll fluorescence measures related to photosynthetic efficiency, performance and stress, and two leaf nutrient traits (leaf %C and %N), across an experimental nutrient gradient at the Arctic Long Term Ecological Research site, located in the northern foothills of the Brooks Range, Alaska. In addition, we explicitly assessed the direct relationships between chlorophyll fluorescence and leaf %N. We found significant differences in physiological and nutrient traits between species and plant functional groups, and we found that species within one functional group (deciduous shrubs) have significantly greater leaf %N at high levels of nutrient addition. In addition, we found positive, saturating relationships between leaf %N and chlorophyll fluorescence measures across all species. Our results highlight species-specific differences in leaf nutrient traits and physiology in this ecosystem. In particular, the effects of a gradient of nutrient enrichment were most prominent in deciduous plant species, the plant functional group known to be increasing in relative abundance with warming in this ecosystem.


Assuntos
Ecossistema , Tundra , Alaska , Regiões Árticas , Nutrientes
12.
Glob Chang Biol ; 26(3): 1668-1680, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31984585

RESUMO

Fertilized temperate croplands export large amounts of reactive nitrogen (N), which degrades water and air quality and contributes to climate change. Fertilizer use is poised to increase in the tropics, where widespread food insecurity persists and increased agricultural productivity will be needed, but much less is known about the potential consequences of increased tropical N fertilizer application. We conducted a meta-analysis of tropical field studies of nitrate leaching, nitrous oxide emissions, nitric oxide emissions, and ammonia volatilization totaling more than 1,000 observations. We found that the relationship between N inputs and losses differed little between temperate and tropical croplands, although total nitric oxide losses were higher in the tropics. Among the potential drivers we studied, the N input rate controlled all N losses, but soil texture and water inputs also controlled hydrological N losses. Irrigated systems had significantly higher losses of ammonia, and pasture agroecosystems had higher nitric oxide losses. Tripling of fertilizer N inputs to tropical croplands from 50 to 150 kg N ha-1  year-1 would have substantial environmental implications and would lead to increases in nitrate leaching (+30%), nitrous oxide emissions (+30%), nitric oxide (+66%) emissions, and ammonia volatilization (+74%), bringing tropical agricultural nitrate, nitrous oxide, and ammonia losses in line with temperate losses and raising nitric oxide losses above them.


Assuntos
Agricultura , Nitrogênio , Fertilizantes , Óxido Nitroso , Solo
13.
Glob Chang Biol ; 26(2): 523-538, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31665819

RESUMO

Intraspecific trait variation is caused by genetic and plastic responses to environment. This intraspecific diversity is captured in immense natural history collections, giving us a window into trait variation across continents and through centuries of environmental shifts. Here we tested if hypotheses based on life history and the leaf economics spectrum explain intraspecific trait changes across global spatiotemporal environmental gradients. We measured phenotypes on a 216-year time series of Arabidopsis thaliana accessions from across its native range and applied spatially varying coefficient models to quantify region-specific trends in trait coordination and trait responses to climate gradients. All traits exhibited significant change across space or through time. For example, δ15 N decreased over time across much of the range and leaf C:N increased, consistent with predictions based on anthropogenic changes in land use and atmosphere. Plants were collected later in the growing season in more recent years in many regions, possibly because populations shifted toward more spring germination and summer flowering as opposed to fall germination and spring flowering. When climate variables were considered, collection dates were earlier in warmer years, while summer rainfall had opposing associations with collection date depending on regions. There was only a modest correlation among traits, indicating a lack of a single life history/physiology axis. Nevertheless, leaf C:N was low for summer- versus spring-collected plants, consistent with a life history-physiology axis from slow-growing winter annuals to fast-growing spring/summer annuals. Regional heterogeneity in phenotype trends indicates complex responses to spatiotemporal environmental gradients potentially due to geographic genetic variation and climate interactions with other aspects of environment. Our study demonstrates how natural history collections can be used to broadly characterize trait responses to environment, revealing heterogeneity in response to anthropogenic change.


Assuntos
Arabidopsis , Clima , Germinação , Folhas de Planta , Estações do Ano
14.
Sci Rep ; 9(1): 7571, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31110241

RESUMO

Symbiotic nitrogen (N) fixation has been shown to support carbon storage in young regenerating tropical forests, but N-fixing trees can also be strong competitors with non-fixing trees, making it unclear which mechanism drives long term patterns in biomass accretion. Many tropical forests have excess N, but factors such as rising atmospheric CO2 or selective cutting practices might induce additional N demand. Here we combine decades of stem inventory data, in-situ measures of symbiotic N fixation, and simulations of N demand to evaluate demographic and biogeochemical controls on biomass dynamics in legume-rich lowland forests of Trinidad. We document sustained net biomass accumulation and high rates of N fixation in these forests, regardless of the timing of selective timber harvests, including an old growth stand. The biomass accumulation was explained by growth of non-fixing trees, not N-fixing trees, but the total amount of symbiotic N fixation was sufficient to account for most of net above ground N demands, suggesting that N-fixers could contribute to the long-term C sink in these forests via fertilizing non-fixers.

15.
Nat Commun ; 10(1): 1493, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940812

RESUMO

Biological nitrogen fixation can fuel CO2 sequestration by forests but can also stimulate soil emissions of nitrous oxide (N2O), a potent greenhouse gas. Here we use a theoretical model to suggest that symbiotic nitrogen-fixing trees could either mitigate (CO2 sequestration outweighs soil N2O emissions) or exacerbate (vice versa) climate change relative to non-fixing trees, depending on their nitrogen fixation strategy (the degree to which they regulate nitrogen fixation to balance nitrogen supply and demand) and on nitrogen deposition. The model posits that nitrogen-fixing trees could exacerbate climate change globally relative to non-fixing trees by the radiative equivalent of 0.77 Pg C yr-1 under nitrogen deposition rates projected for 2030. This value is highly uncertain, but its magnitude suggests that this subject requires further study and that improving the representation of biological nitrogen fixation in climate models could substantially decrease estimates of the extent to which forests will mitigate climate change.

16.
Ecology ; 100(4): e02637, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30698284

RESUMO

Regenerating tropical forests have an immense capacity to capture carbon and harbor biodiversity. The recuperation of the nitrogen cycle following disturbance can fuel biomass regeneration, but few studies have evaluated the successional dynamics of nitrogen and nitrogen inputs in tropical forests. We assessed symbiotic and asymbiotic nitrogen fixation, soil inorganic nitrogen concentrations, and tree growth in a well-studied series of five tropical forest plots ranging from 19 yr in age to old-growth forests. Wet-season soil inorganic nitrogen concentrations were high in all plots, peaking in the 29-yr-old plot. Inputs from symbiotic nitrogen fixation declined through succession, while asymbiotic nitrogen fixation peaked in the 37-yr-old plot. Consequently, the dominant nitrogen fixation input switched from symbiotic fixation in the younger plots to asymbiotic fixation in the older plots. Tree growth was highest in the youngest plots and declined through succession. Interestingly, symbiotic nitrogen fixation was negatively correlated with the basal area of nitrogen-fixing trees across our study plots, highlighting the danger in using nitrogen-fixing trees as a proxy for rates of symbiotic nitrogen fixation. Our results demonstrate that the nitrogen cycle has largely recuperated by 19 yr following disturbance, allowing for rapid biomass regeneration at our site. This work provides important insight into the sources and dynamics of nitrogen that support growth and carbon capture in regenerating Neotropical forests.


Assuntos
Fixação de Nitrogênio , Floresta Úmida , Nitrogênio , Solo , Árvores , Clima Tropical
17.
Ecology ; 100(3): e02476, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30054901
18.
Nat Plants ; 4(9): 655-661, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30127409

RESUMO

Nitrogen limits primary production in almost every biome on Earth1,2. Symbiotic nitrogen fixation, conducted by certain angiosperms and their endosymbiotic bacteria, is the largest potential natural source of new nitrogen into the biosphere3, influencing global primary production, carbon sequestration and element cycling. Because symbiotic nitrogen fixation represents an alternative to soil nitrogen uptake, much of the work on symbiotic nitrogen fixation regulation has focused on soil nitrogen availability4-8. However, because symbiotic nitrogen fixation is an energetically expensive process9, light availability to the plant may also regulate symbiotic nitrogen fixation rates10,11. Despite the importance of symbiotic nitrogen fixation to biosphere functioning, the environmental factors that most strongly regulate this process remain unresolved. Here we show that light regulates symbiotic nitrogen fixation more strongly than does soil nitrogen and that light mediates the response of symbiotic nitrogen fixation to soil nitrogen availability. In a shadehouse experiment, low light levels (comparable with forest understories) completely shut down symbiotic nitrogen fixation, whereas soil nitrogen levels that far exceeded plant demand did not fully downregulate symbiotic nitrogen fixation at high light. For in situ forest seedlings, light was a notable predictor of symbiotic nitrogen fixation activity, but soil-extractable nitrogen was not. Light as a primary regulator of symbiotic nitrogen fixation is a departure from decades of focus on soil nitrogen availability. This shift in our understanding of symbiotic nitrogen fixation regulation can resolve a long-standing biogeochemical paradox12, and it will improve our ability to predict how symbiotic nitrogen fixation will fuel the global forest carbon sink and respond to human alteration of the global nitrogen cycle.


Assuntos
Fixação de Nitrogênio/efeitos da radiação , Nitrogênio/metabolismo , Simbiose/efeitos da radiação , Fabaceae/crescimento & desenvolvimento , Fabaceae/metabolismo , Fabaceae/fisiologia , Luz , Rhizobiaceae/metabolismo , Plântula/crescimento & desenvolvimento , Solo , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Árvores/fisiologia , Clima Tropical
19.
Ecol Lett ; 21(10): 1496-1504, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30084129

RESUMO

Although individual-level variation (IV) is ubiquitous in nature, it is not clear how it influences species coexistence. Theory predicts that IV will hinder coexistence but empirical studies have shown that it can facilitate, inhibit, or have a neutral effect. We use a theoretical model to explore the consequences of IV on local and regional species coexistence in the context of spatial environmental structure. Our results show that individual variation can have a positive effect on species coexistence and that this effect will critically depend on the spatial structure of such variation. IV facilitates coexistence when a negative, concave-up relationship between individuals' competitive response and population growth rates propagates to a disproportionate advantage for the inferior competitor, provided that each species specialises in a habitat. While greater variation in the preferred habitat generally fosters coexistence, the opposite is true for non-preferred habitats. Our results reconcile theory with empirical findings.


Assuntos
Ecossistema , Modelos Biológicos , Humanos , Modelos Teóricos , Dinâmica Populacional
20.
Nat Ecol Evol ; 2(9): 1393-1402, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30013132

RESUMO

Scientific communication relies on clear presentation of data. Logarithmic scales are used frequently for data presentation in many scientific disciplines, including ecology, but the degree to which they are correctly interpreted by readers is unclear. Analysing the extent of log scales in the literature, we show that 22% of papers published in the journal Ecology in 2015 included at least one log-scaled axis, of which 21% were log-log displays. We conducted a survey that asked members of the Ecological Society of America (988 responses, and 623 completed surveys) to interpret graphs that were randomly displayed with linear-linear or log-log axes. Many more respondents interpreted graphs correctly when the graphs had linear-linear axes than when they had log-log axes: 93% versus 56% for our all-around metric, although some of the individual item comparisons were even more skewed (for example, 86% versus 9% and 88% versus 12%). These results suggest that misconceptions about log-scaled data are rampant. We recommend that ecology curricula include explicit instruction on how to interpret log-scaled axes and equations, and we also recommend that authors take the potential for misconceptions into account when deciding how to visualize data.


Assuntos
Bibliometria , Ecologia/métodos , Conceitos Matemáticos , Projetos de Pesquisa , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Publicações Periódicas como Assunto , Inquéritos e Questionários , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...