Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 13(8): 928-934, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38995998

RESUMO

The superior antifouling performance of zwitterionic materials is commonly linked to their hydration structure, in which tight surface binding of water molecules inhibits solute adsorption. However, there is comparatively little direct experimental data on the hydration water structure and dynamics around zwitterionic moieties, including the longer-range behavior of the hydration shell that modulates the approach of solutes to the polymer surface. This work experimentally probes the dynamics of the diffusing hydration water molecules around a series of zwitterion chemistries using Overhauser dynamic nuclear polarization relaxometry. Surprisingly, water dynamics measured within ∼1 nm of the zwitterions were minimally inhibited compared to those near uncharged hydrophilic or cationic side chains. Specific dissolved ions further enhance the water diffusivity near the zwitterions, rendering the hydration shell bulk water-like. These results that the hydration of a zwitterion surface is nearly indistinguishable from bulk water suggest that these surfaces are "invisible" to biological constituents in a manner tunable by the ionic environment and the chemical design of the zwitterionic surface.

2.
ACS Macro Lett ; 13(4): 423-428, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38529829

RESUMO

We report a unique method to construct hierarchical superstructures based on molecular programming of peptidomimetics. Chiral steric hindrance in the polymer backbone stabilizes peptoid helices that crystallize into nanosheets during solvent evaporation. The stacking of nanosheets results in flower-like superstructures. The helical peptoid, nucleated from chiral monomers, is characterized as locally stiffer and more extended than the unstructured peptoid. Molecular dynamics (MD) simulations further suggest a constraint on the dihedral angles and a preference toward the trans configuration, resulting in an extended chain structure. The nanosheet assemblies at various length scales indicate an extent of intermolecular ordering amplified by chiral steric hindrance. Such molecular programming and processing protocols will benefit the future design and controlled assembly of hierarchical peptidomimetics.

3.
Langmuir ; 40(1): 282-290, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38131624

RESUMO

Polymeric zwitterions exhibit exceptional fouling resistance through the formation of a strongly hydrated surface of immobilized water molecules. While being extensively tested for their performance in biomedical, membrane, and, to a lesser extent, marine environments, few studies have investigated how the molecular design of the zwitterion may enhance its performance. Furthermore, while theories of zwitterion antifouling mechanisms exist for molecular-scale foulant species (e.g., proteins and small molecules), it remains unclear how molecular-scale mechanisms influence the micro- and macroscopic interactions of relevance for marine applications. The present study addresses these gaps through the use of a modular zwitterion chemistry platform, which is characterized by a combination of surface-sensitive sum frequency generation (SFG) vibrational spectroscopy and marine assays. Zwitterions with increasingly delocalized cations demonstrate improved fouling resistance against the green alga Ulva linza. SFG spectra correlate well with the assay results, suggesting that the more diffuse charges exhibit greater surface hydration with more bound water molecules. Hence, the number of bound interfacial water molecules appears to be more influential in determining the marine antifouling activities of zwitterionic polymers than the binding strength of individual water molecules at the interface.

4.
Langmuir ; 34(33): 9598-9605, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30036477

RESUMO

For electrophoretic deposition (EPD) to achieve its potential as a method for assembling functional semiconductors, it will be necessary to understand both what governs the threshold voltage for deposition and how to reduce that threshold. Herein we demonstrate that postsynthetic modification of the surface chemistry of all-inorganic copper zinc tin sulfide (CZTS) nanocrystals (NCs) enables EPD at voltages of as low as 4 V, which is a 3-fold or greater reduction over previous examples of nonoxide semiconductors. The chemical exchange of the original surfactant-based NC-surface ligands with selenide ions yields essentially bare, highly surface-charged NCs. Thus, both the electrophoretic mobility and electrochemical reactivity of these particles are increased, favoring deposition. In situ imaging of the reactor during deposition provides a quantitative measure of the electric field in the bulk of the reactor, yielding fundamental insight into the reaction mechanism and mass transport in the low-voltage regime. A crossover from mass-transport-limited to reaction-rate-limited EPD is observed. Under the latter conditions, the influence of gravity can result in boundary-layer instabilities that are severely deleterious to the uniformity of the deposited film, despite the gravitational stability of the colloids in the absence of electric fields. This knowledge is applied to deposit thick, uniform, and crack-free films without sintering, from stable, well-dispersed colloidal starting materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...