Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Phys Anthropol ; 175(4): 847-864, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33973654

RESUMO

OBJECTIVES: Palate morphology is constantly changing throughout an individual's lifespan, yet its asymmetry during growth is still little understood. In this research, we focus on the study of palate morphology by using 3D geometric morphometric approaches to observe changes at different stages of life, and to quantify the impact of directional and fluctuating asymmetry on different areas at different growth stages. MATERIALS AND METHODS: The sample consists of 183 individuals (1-72 years) from two identified human skeletal collections of 19th and early 20th Century Italian contexts. A 3D-template of 41 (semi)landmarks was applied on digital palate models to observe morphological variation during growth. RESULTS: Asymmetrical components of the morphological structure appears multidirectional on the entire palate surface in individuals <2 years old and become oriented (opposite bilateral direction) between 2 and 6 years of age. Specifically, directional asymmetry differentially impacts palate morphology at different stages of growth. Both the anterior and posterior palate are affected by mild alterations in the first year of life, while between 2 and 6 years asymmetry is segregated in the anterior area, and moderate asymmetry affects the entire palatal surface up to 12 years of age. Our results show that stability of the masticatory system seems to be reached around 13-35 years first by females and then males. From 36 years on both sexes show similar asymmetry on the anterior area. Regarding fluctuating asymmetry, inter-individual variability is mostly visible up to 12 years of age, after which only directional trends can be clearly observed at a group level. DISCUSSION: Morphological structure appears instable during the first year of life and acquires an opposite asymmetric bilateral direction between 2 and 6 years of age. This condition has been also documented in adults; when paired with vertical alteration, anterior/posterior asymmetry seems to characterize palate morphology, which is probably due to mechanical factors during the lifespan. Fluctuating asymmetry is predominant in the first period of life due to a plausible relationship with the strength of morphological instability of the masticatory system. Directional asymmetry, on the other hand, shows that the patterning of group-level morphological change might be explained as a functional response to differential inputs (physiological forces, nutritive and non-nutritive habits, para-masticatory activity as well as the development of speech) in different growth stages. This research has implications with respect to medical and evolutionary fields. In medicine, palate morphology should be considered when planning orthodontic and surgical procedures as it could affect the outcome. As far as an evolutionary perspective is concerned the dominance of directional asymmetries in the masticatory system could provide information on dietary and cultural habits as well as pathological conditions in our ancestors.


Assuntos
Palato , Pré-Escolar , Feminino , Humanos , Masculino
2.
Curr Biol ; 31(11): 2484-2493.e7, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33887180

RESUMO

Before the end of the Last Glacial Maximum (LGM, ∼16.5 ka ago)1 set in motion major shifts in human culture and population structure,2 a consistent change in lithic technology, material culture, settlement pattern, and adaptive strategies is recorded in Southern Europe at ∼18-17 ka ago. In this time frame, the landscape of Northeastern Italy changed considerably, and the retreat of glaciers allowed hunter-gatherers to gradually recolonize the Alps.3-6 Change within this renewed cultural frame (i.e., during the Late Epigravettian phase) is currently associated with migrations favored by warmer climate linked to the Bølling-Allerød onset (14.7 ka ago),7-11 which replaced earlier genetic lineages with ancestry found in an individual who lived ∼14 ka ago at Riparo Villabruna, Italy, and shared among different contexts (Villabruna Cluster).9 Nevertheless, these dynamics and their chronology are still far from being disentangled due to fragmentary evidence for long-distance interactions across Europe.12 Here, we generate new genomic data from a human mandible uncovered at Riparo Tagliente (Veneto, Italy), which we directly dated to 16,980-16,510 cal BP (2σ). This individual, affected by focal osseous dysplasia, is genetically affine to the Villabruna Cluster. Our results therefore backdate by at least 3 ka the diffusion in Southern Europe of a genetic component linked to Balkan/Anatolian refugia, previously believed to have spread during the later Bølling/Allerød event. In light of the new genetic evidence, this population replacement chronologically coincides with the very emergence of major cultural transitions in Southern and Western Europe.


Assuntos
Migração Humana , Camada de Gelo , Clima , Europa (Continente) , Humanos , Ocupações
3.
Am J Phys Anthropol ; 174(2): 232-253, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32914870

RESUMO

OBJECTIVES: The analysis of prehistoric human dietary habits is key for understanding the effects of paleoenvironmental changes on the evolution of cultural and social human behaviors. In this study, we compare results from zooarchaeological, stable isotope and dental calculus analyses as well as lower second molar macrowear patterns to gain a broader understanding of the diet of three individuals who lived between the end of the Late Pleistocene and the Early Holocene (ca., 17-8 ky cal BP) in the Eastern Alpine region of Italy. MATERIALS AND METHODS: We analyze individuals buried at the sites of Riparo Tagliente (Verona), Riparo Villabruna, and Mondeval de Sora (Belluno). The three burials provide a unique dataset for diachronically exploring the influence of climatic changes on human subsistence strategies. RESULTS: Isotopic results indicate that all individuals likely relied on both terrestrial and freshwater animal proteins. Even though dental calculus analysis was, in part, hindered by the amount of mineral deposit available on the teeth, tooth macrowear study suggests that the dietary habits of the individuals included plant foods. Moreover, differences in macrowear patterns of lower second molars have been documented between Neanderthals and modern humans in the present sample, due to a prevalence of Buccal wear among the former as opposed to higher values of Lingual wear in modern human teeth. DISCUSSION: Isotopic analyses have emphasized the contribution of animal proteins in the diet of the three foragers from the Eastern Alpine region. The possible intake of carbohydrate-rich plant foods, suggested by the retrieval of plant remains in dental calculus, is supported by the signal of macrowear analysis. Moreover, the latter method indicates that the distribution of macrowear in lower second molars (M2 s) allows us to discriminate between Neanderthals and modern humans within the present reference sample. Overall, our results show these three prehistoric hunter-gatherers were well adapted to the environment in which they lived exploiting many natural resources.


Assuntos
Dieta/história , Comportamento Alimentar/fisiologia , Animais , Isótopos de Carbono/análise , Cálculos Dentários/química , História Antiga , Humanos , Itália , Dente Molar/patologia , Homem de Neandertal , Paleontologia , Desgaste dos Dentes/patologia
4.
J Hum Evol ; 147: 102867, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32889336

RESUMO

The site of Riparo Broion (Vicenza, northeastern Italy) preserves a stratigraphic sequence documenting the Middle-to-Upper Paleolithic transition, in particular the final Mousterian and the Uluzzian cultures. In 2018, a human tooth was retrieved from a late Mousterian level, representing the first human remain ever found from this rock shelter (Riparo Broion 1). Here, we provide the morphological description and taxonomic assessment of Riparo Broion 1 with the support of classic and virtual morphology, 2D and 3D analysis of the topography of enamel thickness, and DNA analysis. The tooth is an exfoliated right upper deciduous canine, and its general morphology and enamel thickness distribution support attribution to a Neanderthal child. Correspondingly, the mitochondrial DNA sequence from Riparo Broion 1 falls within the known genetic variation of Late Pleistocene Neanderthals, in accordance with newly obtained radiocarbon dates that point to approximately 48 ka cal BP as the most likely minimum age for this specimen. The present work describes novel and direct evidence of the late Neanderthal occupation in northern Italy that preceded the marked cultural and technological shift documented by the Uluzzian layers in the archaeological sequence at Riparo Broion. Here, we provide a new full morphological, morphometric, and taxonomic analysis of Riparo Broion 1, in addition to generating the wider reference sample of Neanderthal and modern human upper deciduous canines. This research contributes to increasing the sample of fossil remains from Italy, as well as the number of currently available upper deciduous canines, which are presently poorly documented in the scientific literature.


Assuntos
Dente Canino/anatomia & histologia , Fósseis/anatomia & histologia , Homem de Neandertal/anatomia & histologia , Dente Decíduo/anatomia & histologia , Animais , Itália , Maxila , Paleodontologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...