Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 15(6): e0009361, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34061838

RESUMO

BACKGROUND: Helminths can modulate the host immune response to Plasmodium falciparum and can therefore affect the risk of clinical malaria. We assessed here the effect of helminth infections on both the immunogenicity and efficacy of the GMZ2 malaria vaccine candidate, a recombinant protein consisting of conserved domains of GLURP and MSP3, two asexual blood-stage antigens of P. falciparum. Controlled human malaria infection (CHMI) was used to assess the efficacy of the vaccine. METHODOLOGY: In a randomized, double-blind Phase I clinical trial, fifty, healthy, lifelong malaria-exposed adult volunteers received three doses of GMZ2 adjuvanted with either Cationic Adjuvant Formulation (CAF) 01 or Alhydrogel, or a control vaccine (Rabies) on days (D) 0, D28 and D56, followed by direct venous inoculation (DVI) of 3,200 P. falciparum sporozoites (PfSPZ Challenge) approximately 13 weeks after last vaccination to assess vaccine efficacy. Participants were followed-up on a daily basis with clinical examinations and thick blood smears to monitor P. falciparum parasitemia for 35 days. Malaria was defined as the presence of P. falciparum parasites in the blood associated with at least one symptom that can be associated to malaria over 35 days following DVI of PfSPZ Challenge. Soil-transmitted helminth (STH) infection was assessed by microscopy and by polymerase chain reaction (PCR) on stool, and Schistosoma infection was assessed by microscopy on urine. Participants were considered as infected if positive for any helminth either by PCR and/or microscopy at D0 and/or at D84 (Helm+) and were classified as mono-infection or co-infection. Total vaccine-specific IgG concentrations assessed on D84 were analysed as immunogenicity outcome. MAIN FINDINGS: The helminth in mono-infection, particularly Schistosoma haematobium and STH were significantly associated with earlier malaria episodes following CHMI, while no association was found in case of coinfection. In further analyses, the anti-GMZ2 IgG concentration on D84 was significantly higher in the S. haematobium-infected and significantly lower in the Strongyloides stercoralis-infected groups, compared to helminth-negative volunteers. Interesting, in the absence of helminth infection, a high anti-GMZ2 IgG concentration on D84 was significantly associated with protection against malaria. CONCLUSIONS: Our results suggest that helminth infection may reduce naturally acquired and vaccine-induced protection against malaria. Vaccine-specific antibody concentrations on D84 may be associated with protection in participants with no helminth infection. These results suggest that helminth infection affect malaria vaccine immunogenicity and efficacy in helminth endemic countries.


Assuntos
Helmintíase/complicações , Vacinas Antimaláricas/normas , Malária/prevenção & controle , Anticorpos Antiprotozoários/sangue , Especificidade de Anticorpos , Método Duplo-Cego , Seguimentos , Humanos , Esquemas de Imunização , Imunoglobulina G/sangue , Malária/complicações , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia
2.
Expert Opin Investig Drugs ; 28(3): 217-222, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30577704

RESUMO

INTRODUCTION: AQ-13 is a drug candidate in development for the treatment of Plasmodium falciparum infections. The chemical structure is similar to chloroquine, a 4-aminoquinoline, with a shorter diaminoalkane side chain. Chloroquine has been the standard of care for P.falciparum malaria for more than 40 years, but the spread of resistant parasites in all malaria endemic regions has led to abandonment of the drug. The outstanding attribute of AQ-13 is its retrieval of activity against chloroquine-resistant P.falciparum. Areas covered: We review preclinical and clinical studies on AQ-13 and summarize findings on pharmacokinetic, safety, potency and efficacy. Expert opinion: Based on its properties invivo, the most likely future indication of AQ-13 could be case management of uncomplicated falciparum malaria - as a partner drug in a combination therapy. Several 4-aminoquinolines combined with a partner drug are on the market and in development. The outstanding properties of AQ-13 should be identified to direct further clinical development.


Assuntos
Antimaláricos/administração & dosagem , Malária Falciparum/tratamento farmacológico , Quinolinas/administração & dosagem , Animais , Antimaláricos/efeitos adversos , Antimaláricos/farmacologia , Cloroquina/química , Cloroquina/farmacologia , Desenvolvimento de Medicamentos , Resistência a Medicamentos , Quimioterapia Combinada , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Quinolinas/efeitos adversos , Quinolinas/farmacologia
3.
Am J Trop Med Hyg ; 98(2): 508-515, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29260650

RESUMO

Controlled human malaria infection (CHMI) by direct venous inoculation (DVI) with 3,200 cryopreserved Plasmodium falciparum sporozoites (PfSPZ) consistently leads to parasitemia and malaria symptoms in malaria-naive adults. We used CHMI by DVI to investigate infection rates, parasite kinetics, and malaria symptoms in lifelong malaria-exposed (semi-immune) Gabonese adults with and without sickle cell trait. Eleven semi-immune Gabonese with normal hemoglobin (IA), nine with sickle cell trait (IS), and five nonimmune European controls with normal hemoglobin (NI) received 3,200 PfSPZ by DVI and were followed 28 days for parasitemia by thick blood smear (TBS) and quantitative polymerase chain reaction (qPCR) and for malaria symptoms. End points were time to parasitemia and parasitemia plus symptoms. PfSPZ Challenge was well tolerated and safe. Five of the five (100%) NI, 7/11 (64%) IA, and 5/9 (56%) IS volunteers developed parasitemia by TBS, and 5/5 (100%) NI, 9/11 (82%) IA, and 7/9 (78%) IS by qPCR, respectively. The time to parasitemia by TBS was longer in IA (geometric mean 16.9 days) and IS (19.1 days) than in NA (12.6 days) volunteers (P = 0.016, 0.021, respectively). Five of the five, 6/9, and 1/7 volunteers with parasitemia developed symptoms (P = 0.003, NI versus IS). Naturally adaptive immunity (NAI) to malaria significantly prolonged the time to parasitemia. Sickle cell trait seemed to prolong it further. NAI plus sickle cell trait, but not NAI alone, significantly reduced symptom rate. Twenty percent (4/20) semi-immunes demonstrated sterile protective immunity. Standardized CHMI with PfSPZ Challenge is a powerful tool for dissecting the impact of innate and naturally acquired adaptive immunity on malaria.


Assuntos
Imunidade Adaptativa/imunologia , Imunidade Inata/imunologia , Malária/terapia , Plasmodium falciparum/parasitologia , Traço Falciforme/parasitologia , Adulto , Feminino , Gabão , Humanos , Masculino , Parasitemia/sangue , Parasitemia/terapia , Plasmodium falciparum/imunologia
4.
Lancet Infect Dis ; 17(6): 636-644, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28363637

RESUMO

BACKGROUND: A drug for causal (ie, pre-erythrocytic) prophylaxis of Plasmodium falciparum malaria with prolonged activity would substantially advance malaria control. DSM265 is an experimental antimalarial that selectively inhibits the parasite dihydroorotate dehydrogenase. DSM265 shows in vitro activity against liver and blood stages of P falciparum. We assessed the prophylactic activity of DSM265 against controlled human malaria infection (CHMI). METHODS: At the Institute of Tropical Medicine, Eberhard Karls University (Tübingen, Germany), healthy, malaria-naive adults were allocated to receive 400 mg DSM265 or placebo either 1 day (cohort 1A) or 7 days (cohort 2) before CHMI by direct venous inoculation (DVI) of 3200 aseptic, purified, cryopreserved P falciparum sporozoites (PfSPZ Challenge; Sanaria Inc, Rockville, MD, USA). An additional group received daily atovaquone-proguanil (250-100 mg) for 9 days, starting 1 day before CHMI (cohort 1B). Allocation to DSM265, atovaquone-proguanil, or placebo was randomised by an interactive web response system. Allocation to cohort 1A and 1B was open-label, within cohorts 1A and 2, allocation to DSM265 and placebo was double-blinded. All treatments were given orally. Volunteers were treated with an antimalarial on day 28, or when parasitaemic, as detected by thick blood smear (TBS) microscopy. The primary efficacy endpoint was time-to-parasitaemia, assessed by TBS. All participants receiving at least one dose of chemoprophylaxis or placebo were considered for safety, those receiving PfSPZ Challenge for efficacy analyses. Log-rank test was used to compare time-to-parasitemia between interventions. The trial was registered with ClinicalTrials.gov, number NCT02450578. FINDINGS: 22 participants were enrolled between Oct 23, 2015, and Jan 18, 2016. Five participants received 400 mg DSM265 and two participants received placebo 1 day before CHMI (cohort 1A), six participants received daily atovaquone-proguanil 1 day before CHMI (cohort 1B), and six participants received 400 mg DSM265 and two participants received placebo 7 days before CHMI (cohort 2). Five of five participants receiving DSM265 1 day before CHMI and six of six in the atovaquone-proguanil cohort were protected, whereas placebo recipients (two of two) developed malaria on days 11 and 14. When given 7 days before CHMI, three of six volunteers receiving DSM265 became TBS positive on days 11, 13, and 24. The remaining three DSM265-treated, TBS-negative participants of cohort 2 developed transient submicroscopic parasitaemia. Both participants receiving placebo 7 days before CHMI became TBS positive on day 11. The only possible DSM265-related adverse event was a moderate transient elevation in serum bilirubin in one participant. INTERPRETATION: A single dose of 400 mg DSM265 was well tolerated and had causal prophylactic activity when given 1 day before CHMI. Future trials are needed to investigate further the use of DSM265 for the prophylaxis of malaria. FUNDING: Global Health Innovative Technology Fund, Wellcome Trust, Bill & Melinda Gates Foundation through Medicines for Malaria Venture, and the German Center for Infection Research.


Assuntos
Antimaláricos/administração & dosagem , Quimioprevenção , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/imunologia , Pirimidinas/administração & dosagem , Triazóis/administração & dosagem , Administração Intravenosa , Adolescente , Adulto , Antimaláricos/uso terapêutico , Método Duplo-Cego , Feminino , Humanos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Parasitemia/imunologia , Parasitemia/parasitologia , Pirimidinas/uso terapêutico , Esporozoítos/imunologia , Triazóis/uso terapêutico , Voluntários
5.
Nature ; 542(7642): 445-449, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28199305

RESUMO

A highly protective malaria vaccine would greatly facilitate the prevention and elimination of malaria and containment of drug-resistant parasites. A high level (more than 90%) of protection against malaria in humans has previously been achieved only by immunization with radiation-attenuated Plasmodium falciparum (Pf) sporozoites (PfSPZ) inoculated by mosquitoes; by intravenous injection of aseptic, purified, radiation-attenuated, cryopreserved PfSPZ ('PfSPZ Vaccine'); or by infectious PfSPZ inoculated by mosquitoes to volunteers taking chloroquine or mefloquine (chemoprophylaxis with sporozoites). We assessed immunization by direct venous inoculation of aseptic, purified, cryopreserved, non-irradiated PfSPZ ('PfSPZ Challenge') to malaria-naive, healthy adult volunteers taking chloroquine for antimalarial chemoprophylaxis (vaccine approach denoted as PfSPZ-CVac). Three doses of 5.12 × 104 PfSPZ of PfSPZ Challenge at 28-day intervals were well tolerated and safe, and prevented infection in 9 out of 9 (100%) volunteers who underwent controlled human malaria infection ten weeks after the last dose (group III). Protective efficacy was dependent on dose and regimen. Immunization with 3.2 × 103 (group I) or 1.28 × 104 (group II) PfSPZ protected 3 out of 9 (33%) or 6 out of 9 (67%) volunteers, respectively. Three doses of 5.12 × 104 PfSPZ at five-day intervals protected 5 out of 8 (63%) volunteers. The frequency of Pf-specific polyfunctional CD4 memory T cells was associated with protection. On a 7,455 peptide Pf proteome array, immune sera from at least 5 out of 9 group III vaccinees recognized each of 22 proteins. PfSPZ-CVac is a highly efficacious vaccine candidate; when we are able to optimize the immunization regimen (dose, interval between doses, and drug partner), this vaccine could be used for combination mass drug administration and a mass vaccination program approach to eliminate malaria from geographically defined areas.


Assuntos
Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Vacinas Atenuadas/imunologia , Adolescente , Adulto , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Cloroquina/uso terapêutico , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Memória Imunológica/imunologia , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Pessoa de Meia-Idade , Plasmodium falciparum/classificação , Esporozoítos/imunologia , Linfócitos T/imunologia , Fatores de Tempo , Vacinas Atenuadas/administração & dosagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...