Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 30(Pt 1): 242-250, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601943

RESUMO

The PERCIVAL detector is a CMOS imager designed for the soft X-ray regime at photon sources. Although still in its final development phase, it has recently seen its first user experiments: ptychography at a free-electron laser, holographic imaging at a storage ring and preliminary tests on X-ray photon correlation spectroscopy. The detector performed remarkably well in terms of spatial resolution achievable in the sample plane, owing to its small pixel size, large active area and very large dynamic range; but also in terms of its frame rate, which is significantly faster than traditional CCDs. In particular, it is the combination of these features which makes PERCIVAL an attractive option for soft X-ray science.


Assuntos
Fótons , Radiografia , Raios X
2.
Opt Lett ; 47(8): 1945-1948, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427307

RESUMO

Propagation-based phase-contrast x-ray imaging (PB-PCXI) generates image contrast by utilizing sample-imposed phase-shifts. This has proven useful when imaging weakly attenuating samples, as conventional attenuation-based imaging does not always provide adequate contrast. We present a PB-PCXI algorithm capable of extracting the x-ray attenuation  ß and refraction  δ, components of the complex refractive index of distinct materials within an unknown sample. The method involves curve fitting an error-function-based model to a phase-retrieved interface in a PB-PCXI tomographic reconstruction, which is obtained when Paganin-type phase retrieval is applied with incorrect values of δ and ß. The fit parameters can then be used to calculate true δ and ß values for composite materials. This approach requires no a priori sample information, making it broadly applicable. Our PB-PCXI reconstruction is single-distance, requiring only one exposure per tomographic angle, which is important for radiosensitive samples. We apply this approach to a breast-tissue sample, recovering the refraction component  Î´, with 0.6-2.4% accuracy compared with theoretical values.


Assuntos
Tomografia Computadorizada por Raios X , Tomografia , Algoritmos , Imageamento Tridimensional , Tomografia Computadorizada por Raios X/métodos , Raios X
3.
Sci Rep ; 5: 12509, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26219661

RESUMO

X-rays are commonly used as a means to image the inside of objects opaque to visible light, as their short wavelength allows penetration through matter and the formation of high spatial resolution images. This physical effect has found particular importance in medicine where x-ray based imaging is routinely used as a diagnostic tool. Increasingly, however, imaging modalities that provide functional as well as morphological information are required. In this study the potential to use x-ray phase based imaging as a functional modality through the use of microbubbles that can be targeted to specific biological processes is explored. We show that the concentration of a microbubble suspension can be monitored quantitatively whilst in flow using x-ray phase contrast imaging. This could provide the basis for a dynamic imaging technique that combines the tissue penetration, spatial resolution, and high contrast of x-ray phase based imaging with the functional information offered by targeted imaging modalities.


Assuntos
Meios de Contraste , Diagnóstico por Imagem/métodos , Microbolhas , Raios X , Diagnóstico por Imagem/instrumentação , Humanos , Imagens de Fantasmas
4.
Rev Sci Instrum ; 84(5): 051301, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23742525

RESUMO

FERMI@Elettra, the first vacuum ultraviolet and soft X-ray free-electron laser (FEL) using by default a "seeded" scheme, became operational in 2011 and has been opened to users since December 2012. The parameters of the seeded FERMI FEL pulses and, in particular, the superior control of emitted radiation in terms of spectral purity and stability meet the stringent requirements for single-shot and resonant coherent diffraction imaging (CDI) experiments. The advantages of the intense seeded FERMI pulses with variable polarization have been demonstrated with the first experiments performed using the multipurpose experimental station operated at the diffraction and projection imaging (DiProI) beamline. The results reported here were obtained with fixed non-periodic targets during the commissioning period in 2012 using 20-32 nm wavelength range. They demonstrate that the performance of the FERMI FEL source and the experimental station meets the requirements of CDI, holography, and resonant magnetic scattering in both multi- and single-shot modes. Moreover, we present the first magnetic scattering experiments employing the fully circularly polarized FERMI pulses. The ongoing developments aim at pushing the lateral resolution by using shorter wavelengths provided by double-stage cascaded FERMI FEL-2 and probing ultrafast dynamic processes using different pump-probe schemes, including jitter-free seed laser pump or FEL-pump∕FEL-probe with two color FEL pulses generated by the same electron bunch.

5.
Curr Med Chem ; 20(17): 2157-75, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23458618

RESUMO

Synchrotron radiation (SR), which combines extremely high intensity, high collimation, tunability, and continuous energy spectrum, allows the development of advanced X-ray based techniques that are becoming a uniquely useful tool in life science research, along providing exciting opportunities in biomedical imaging and radiotherapy. This review summarize emerging techniques and their potential to greatly enhance the exploration of dynamical biological process occurring across various spatial and temporal regimes, from whole body physiology, down to the location of individual chemical species within single cells. In recent years pediatric research and clinic practice have started to profit from these new opportunities, particularly by extending the diagnostic and therapeutic capabilities of these X-ray based techniques. In diagnosis, technical advances in DEI and KES imaging modalities have been demonstrated as particularly valuable for children and women since SR allows dose minimization, with significant reductions compared to conventional approaches. However, the greatest expectations are in the field of SR based radiotherapy, increasingly studies are demonstrating SR radiotherapy provides improved chances of recovery; this is especially the case for pediatric patients. In addition, we report on the applicability of advanced X-ray microscopy techniques that offer exceptional spatial and quantitative resolution in elemental detection. These techniques, which are useful for in vitro studies, will be particularly advantageous where investigators seek deeper understanding of diseases where mismetabolism of metals, either physiological important (i.e. Cu, Zn) or outright toxic (i.e. Pb), underlies pathogenesis.


Assuntos
Neoplasias/diagnóstico , Algoritmos , Criança , Humanos , Metais/metabolismo , Microscopia de Fluorescência , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Espectrometria por Raios X , Síncrotrons , Tomografia por Raios X
6.
Phys Med Biol ; 55(17): 4993-5005, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20702925

RESUMO

The measurement of the linear attenuation coefficients of breast tissues is of fundamental importance in the field of breast x-ray diagnostic imaging. Different groups have evaluated the linear attenuation coefficients of breast tissues by carrying out direct attenuation measurements in which the specimens were thin and selected as homogeneous as possible. Here, we use monochromatic and high-intensity synchrotron radiation computed tomography (SR CT) to evaluate the linear attenuation coefficients of surgical breast tissues in the energy range from 15 to 26.5 keV. X-ray detection is performed by a custom digital silicon micro-strip device, developed in the framework of the PICASSO INFN experiment. Twenty-three human surgical breast samples were selected for SR CT and histological study. Six of them underwent CT, both as fresh tissue and after formalin fixation, while the remaining 17 were imaged only as formalin-fixed tissues. Our results for fat and fibrous tissues are in good agreement with the published values. However, in contrast to the published data, our measurements show no significant differences between fibrous and tumor tissues. Moreover, our results for fresh and formalin-fixed tissues demonstrate a reduction of the linear attenuation coefficient for fibrous and tumor tissues after fixation.


Assuntos
Mama/patologia , Tecido Conjuntivo/patologia , Síncrotrons , Tomografia Computadorizada por Raios X/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Tecido Conjuntivo/diagnóstico por imagem , Transferência de Energia , Feminino , Humanos , Modelos Lineares , Tomografia Computadorizada por Raios X/instrumentação
7.
Phys Med Biol ; 55(6): 1643-58, 2010 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-20182004

RESUMO

Conventional contrast agents utilized in diagnostic radiology are based on x-ray absorption properties; alternative physical principles capable of providing a contrast enhancement in radiographs have never been applied. This study exploits the possibility of using a novel type of contrast media based on x-ray scattering. The contrast agents consist of microbubble echo-enhancing agents, usually applied in ultrasound examinations, which are invisible with conventional x-ray absorption techniques. The experiment was carried out at the medical beamline of the synchrotron radiation laboratory ELETTRA in Trieste, Italy. A flat silicon analyzer crystal typically used for diffraction-enhanced imaging was utilized as a tool for detecting the scattering properties of the contrast agents. In analyzer-based imaging, it is possible to detect the scattering properties of the sample by shifting the analyzer crystal to selected positions of its reflectivity curve. In particular, when the sample consists of a large number of micro-particles an overall effect can be observed. Phantoms containing contrast agents based on microbubbles were imaged at different angular positions of the analyzer crystal. High visibility of the details was demonstrated, and a strong contrast enhancement was measured compared to normal x-ray absorption techniques.


Assuntos
Meios de Contraste , Diagnóstico por Imagem/instrumentação , Microbolhas , Silício/química , Difração de Raios X/instrumentação , Absorção , Diagnóstico por Imagem/métodos , Humanos , Imagens de Fantasmas , Sensibilidade e Especificidade , Análise Espectral/métodos , Síncrotrons , Difração de Raios X/métodos , Raios X
8.
Eur J Radiol ; 68(3 Suppl): S58-62, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18617344

RESUMO

A clinical program for X-ray phase contrast (PhC) mammography with synchrotron radiation (SR) has been started in March 2006 at the SYRMEP beamline of Elettra, the SR facility in Trieste, Italy. The original beamline layout has been modified substantially and a clinical facility has been realized. In order to fulfill all security requirements, dedicated systems have been designed and implemented, following redundancy criteria and "fail safe" philosophy. Planar radiographic images are obtained by scanning simultaneously the patient and the detector through the stationary and laminar SR beam. In this first phase of the project a commercial screen-film system has been used as image receptor. Upon approval by the respective authorities, the mammography program is about half way to conclusion. Up to now about 50 patients have been examined. The patients are volunteers recruited by the radiologist after conventional examinations at the hospital resulted in an uncertain diagnosis. As an example one case of PhC SR mammography is shown and compared to conventional digital mammography. Preliminary analysis shows the high diagnostic quality of the PhC SR images that were acquired with equal or less delivered dose compared to the conventional ones.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mamografia/instrumentação , Refratometria/instrumentação , Síncrotrons/instrumentação , Tomografia por Raios X/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Imageamento Tridimensional/instrumentação , Intensificação de Imagem Radiográfica/instrumentação , Interpretação de Imagem Radiográfica Assistida por Computador/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Phys Med Biol ; 52(14): 4171-87, 2007 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-17664601

RESUMO

Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (<100 microm), whilst quantitative phase and attenuation information can be extracted using just two images when the approximations of geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/métodos , Óptica e Fotônica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Br J Radiol ; 76(905): 301-8, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12763945

RESUMO

The purpose of this study was to explore the potential of refraction contrast X-ray imaging of biological tissues. Images of dissected mouse lungs, heart, liver and legs were produced using the medical beamline at the Elettra Synchrotron at Trieste, Italy. The technique used was diffraction enhanced imaging. This utilizes a silicon crystal positioned between the tissue sample and the detector to separate refracted X-rays from transmitted and scattered radiation by Bragg diffraction. The contrast in the images produced is related to changes in the X-ray refractive index of the tissues, resulting in remarkable clarity compared with conventional X-ray images based on absorption effects. These changes were greatest at the boundaries between different tissues, giving a marked edge enhancement effect and three-dimensional appearance to the images. The technique provides a way of imaging a property of biological tissues not yet exploited, and further studies are planned to identify specific applications in medical imaging.


Assuntos
Intensificação de Imagem Radiográfica/métodos , Animais , Extremidades/diagnóstico por imagem , Feminino , Coração/diagnóstico por imagem , Fígado/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos BALB C , Espalhamento de Radiação , Tecnologia Radiológica/métodos
11.
Phys Med Biol ; 47(3): 469-80, 2002 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-11848123

RESUMO

Among the medical physics community, there is nowadays a great interest in the possible implementation of scatter imaging techniques, especially in the field of breast imaging. It is well known that malignant lesions and normal tissue differ in their scattering signatures, and thus scattered radiation can provide a powerful tool to distinguish between the two cases. Up to now, most of the proposed techniques rely on the detection of radiation scattered at angles of the order of a few degrees, which in most cases results in very high contrast values. On the other hand, at those relatively large angles the scattered flux is relatively low with respect to the primary, which often implies the necessity of increasing the dose delivered to the sample in order to achieve sufficient statistics. Furthermore, most of these techniques are based on pencil beam set-ups, which results in an increase of the overall duration of the examination. We propose here an alternative approach based on the detection of radiation scattered at extremely small angles, of the order of approximately 100-200 microrad. This results in a relatively high scattered flux (5-10% of the primary) and in the possibility of utilizing a fan beam geometry, which reduces the acquisition times with respect to pencil beam set-ups. Images of several samples have been acquired, demonstrating that the proposed technique results in an increased contrast with respect to absorption imaging. Possible in vivo implementations of the technique at no dose expense are finally discussed.


Assuntos
Síncrotrons/instrumentação , Raios X , Algoritmos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Humanos , Radiografia , Radiometria/métodos , Espalhamento de Radiação , Software
12.
Med Phys ; 28(8): 1610-9, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11548930

RESUMO

Recently, new imaging modalities based on the detection of weak phase perturbations effects, among which are phase contrast and diffraction imaging, have been developed by several researchers. Due to their high sensitivity to weakly absorbing details, these techniques seem to be very promising for applications in the medical field. On the other hand, digital radiology is undergoing a wide diffusion, and its benefits are presently very well understood. Up to now, however, the strong pixel size constraints associated with phase contrast pattern detection limited the possibility of exploiting the advantages of phase contrast in digital radiology applications. In this paper, an innovative setup capable of removing the pixel size constraints, and thus opening the way to low dose digital phase contrast imaging, is described. Furthermore, we introduce an imaging technique based on the detection of radiation scattered at small angles: the information extracted from the sample is increased at no dose expense. We believe that several radiological fields, mammography being the first important example, may benefit from the herein described innovative imaging techniques.


Assuntos
Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador , Radiografia/métodos , Humanos , Mamografia/métodos , Imagens de Fantasmas , Espalhamento de Radiação , Software , Raios X
13.
Med Phys ; 27(11): 2609-16, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11128314

RESUMO

In order to ensure an early diagnosis of breast cancer, an imaging system must fulfil extremely stringent requirements in terms of dynamic range, contrast resolution and spatial resolution. Furthermore, in order to reduce the dose delivered to the patient, a high efficiency of the detector device should be provided. In this paper the SYRMEP/FRONTRAD (SYnchrotron Radiation for MEdical Physics/FRONTier RADiology) mammography project, based on synchroton radiation and a novel solid state pixel detector, is briefly described. Particular relevance is given to the fact that the radiographic image is obtained by means of a scanning technique, which allows the possibility of utilizing a scanning step smaller than the pixel size. With this procedure, a convolution between the real image and the detector point spread function (PSF) is actually acquired: by carefully measuring the detector PSF, it is possible to apply a post-processing procedure (filtered deconvolution), which reconstructs images with enhanced spatial resolution. The image acquisition modality and the deconvolution algorithm are herein described, and some test object images, with spatial resolution enhanced by means of the filtered deconvolution procedure, are presented. As discussed in detail in this paper, this procedure allows us to obtain a spatial resolution determined by the scanning step, rather than by the pixel size.


Assuntos
Neoplasias da Mama/diagnóstico , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Humanos , Mamografia/métodos , Modelos Estatísticos , Radiometria
14.
Radiology ; 215(1): 286-93, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10751500

RESUMO

The authors evaluated the effect on mammographic examinations of the use of synchrotron radiation to detect phase-perturbation effects, which are higher than absorption effects for soft tissue in the energy range of 15-25 keV. Detection of phase-perturbation effects was possible because of the high degree of coherence of synchrotron radiation sources. Synchrotron radiation images were obtained of a mammographic phantom and in vitro breast tissue specimens and compared with conventional mammographic studies. On the basis of grades assigned by three reviewers, image quality of the former was considerably higher, and the delivered dose was fully compatible.


Assuntos
Mamografia/métodos , Síncrotrons , Absorção , Mama/efeitos da radiação , Feminino , Humanos , Mamografia/instrumentação , Variações Dependentes do Observador , Imagens de Fantasmas , Doses de Radiação , Intensificação de Imagem Radiográfica/instrumentação , Intensificação de Imagem Radiográfica/métodos , Espalhamento de Radiação , Fatores de Tempo , Difração de Raios X/instrumentação , Filme para Raios X , Ecrans Intensificadores para Raios X , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...