Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 3): 605-612, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38592969

RESUMO

Experimental characterization of the structural, electronic and dynamic properties of dilute systems in aqueous solvents, such as nanoparticles, molecules and proteins, are nowadays an open challenge. X-ray absorption spectroscopy (XAS) is probably one of the most established approaches to this aim as it is element-specific. However, typical dilute systems of interest are often composed of light elements that require extreme-ultraviolet to soft X-ray photons. In this spectral regime, water and other solvents are rather opaque, thus demanding radical reduction of the solvent volume and removal of the liquid to minimize background absorption. Here, we present an experimental endstation designed to operate a liquid flat jet of sub-micrometre thickness in a vacuum environment compatible with extreme ultraviolet/soft XAS measurements in transmission geometry. The apparatus developed can be easily connected to synchrotron and free-electron-laser user-facility beamlines dedicated to XAS experiments. The conditions for stable generation and control of the liquid flat jet are analyzed and discussed. Preliminary soft XAS measurements on some test solutions are shown.

2.
Sci Rep ; 13(1): 4206, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918574

RESUMO

This paper presents a new flexible compact multi-modal imaging setup referred to as PEPI (Photon-counting Edge-illumination Phase-contrast imaging) Lab, which is based on the edge-illumination (EI) technique and a chromatic detector. The system enables both X-ray phase-contrast (XPCI) and spectral (XSI) imaging of samples on the centimeter scale. This work conceptually follows all the stages in its realization, from the design to the first imaging results. The setup can be operated in four different modes, i.e. photon-counting/conventional, spectral, double-mask EI, and single-mask EI, whereby the switch to any modality is fast, software controlled, and does not require any hardware modification or lengthy re-alignment procedures. The system specifications, ranging from the X-ray tube features to the mask material and aspect ratio, have been quantitatively studied and optimized through a dedicated Geant4 simulation platform, guiding the choice of the instrumentation. The realization of the imaging setup, both in terms of hardware and control software, is detailed and discussed with a focus on practical/experimental aspects. Flexibility and compactness (66 cm source-to-detector distance in EI) are ensured by dedicated motion stages, whereas spectral capabilities are enabled by the Pixirad-1/Pixie-III detector in combination with a tungsten anode X-ray source operating in the range 40-100 kVp. The stability of the system, when operated in EI, has been verified, and drifts leading to mask misalignment of less than 1 [Formula: see text]m have been measured over a period of 54 h. The first imaging results, one for each modality, demonstrate that the system fulfills its design requirements. Specifically, XSI tomographic images of an iodine-based phantom demonstrate the system's quantitativeness and sensibility to concentrations in the order of a few mg/ml. Planar XPCI images of a carpenter bee specimen, both in single and double-mask modes, demonstrate that refraction sensitivity (below 0.6 [Formula: see text]rad in double-mask mode) is comparable with other XPCI systems based on microfocus sources. Phase CT capabilities have also been tested on a dedicated plastic phantom, where the phase channel yielded a 15-fold higher signal-to-noise ratio with respect to attenuation.

3.
Sensors (Basel) ; 22(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35746377

RESUMO

In hard X-ray applications that require high detection efficiency and short response times, such as synchrotron radiation-based Mössbauer absorption spectroscopy and time-resolved fluorescence or photon beam position monitoring, III-V-compound semiconductors, and dedicated alloys offer some advantages over the Si-based technologies traditionally used in solid-state photodetectors. Amongst them, gallium arsenide (GaAs) is one of the most valuable materials thanks to its unique characteristics. At the same time, implementing charge-multiplication mechanisms within the sensor may become of critical importance in cases where the photogenerated signal needs an intrinsic amplification before being acquired by the front-end electronics, such as in the case of a very weak photon flux or when single-photon detection is required. Some GaAs-based avalanche photodiodes (APDs) were grown by a molecular beam epitaxy to fulfill these needs; by means of band gap engineering, we realised devices with separate absorption and multiplication region(s) (SAM), the latter featuring a so-called staircase structure to reduce the multiplication noise. This work reports on the experimental characterisations of gain, noise, and charge collection efficiencies of three series of GaAs APDs featuring different thicknesses of the absorption regions. These devices have been developed to investigate the role of such thicknesses and the presence of traps or defects at the metal-semiconductor interfaces responsible for charge loss, in order to lay the groundwork for the future development of very thick GaAs devices (thicker than 100 µm) for hard X-rays. Several measurements were carried out on such devices with both lasers and synchrotron light sources, inducing photon absorption with X-ray microbeams at variable and controlled depths. In this way, we verified both the role of the thickness of the absorption region in the collection efficiency and the possibility of using the APDs without reaching the punch-through voltage, thus preventing the noise induced by charge multiplication in the absorption region. These devices, with thicknesses suitable for soft X-ray detection, have also shown good characteristics in terms of internal amplification and reduction of multiplication noise, in line with numerical simulations.

4.
Med Phys ; 48(9): 5343-5355, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34252212

RESUMO

PURPOSE: The SYRMA-3D collaboration is setting up a breast computed tomography (bCT) clinical program at the Elettra synchrotron radiation facility in Trieste, Italy. Unlike the few dedicated scanners available at hospitals, synchrotron radiation bCT requires the patient's rotation, which in turn implies a long scan duration (from tens of seconds to few minutes). At the same time, it allows the achievement of high spatial resolution. These features make synchrotron radiation bCT prone to motion artifacts. This article aims at assessing and compensating for motion artifacts through an optical tracking approach. METHODS: In this study, patients' movements due to breathing have been first assessed on seven volunteers and then simulated during the CT scans of a breast phantom and a surgical specimen, by adding a periodic oscillatory motion (constant speed, 1 mm amplitude, 12 cycles/minute). CT scans were carried out at 28 keV with a mean glandular dose of 5 mGy. Motion artifacts were evaluated and a correction algorithm based on the optical tracking of fiducial marks was introduced. A quantitative analysis based on the structural similarity (SSIM) index and the normalized mean square error (nMSE) was performed on the reconstructed CT images. RESULTS: CT images reconstructed through the optical tracking procedure were found to be as good as the motionless reference image. Moreover, the analysis of SSIM and nMSE demonstrated that an uncorrected motion of the order of the system's point spread function (around 0.1 mm in the present case) can be tolerated. CONCLUSIONS: Results suggest that a motion correction procedure based on an optical tracking system would be beneficial in synchrotron radiation bCT.


Assuntos
Artefatos , Síncrotrons , Algoritmos , Mama/diagnóstico por imagem , Mama/cirurgia , Humanos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
5.
J Synchrotron Radiat ; 28(Pt 2): 410-418, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650552

RESUMO

It has been shown previously both in vitro and in vivo that microbeam irradiation (MBI) can control malignant tumour cells more effectively than the clinically established concepts of broad beam irradiation. With the aim to extend the international capacity for microbeam research, the first MBI experiment at the biomedical beamline SYRMEP of the Italian synchrotron facility ELETTRA has been conducted. Using a multislit collimator produced by the company TECOMET, arrays of quasi-parallel microbeams were successfully generated with a beam width of 50 µm and a centre-to-centre distance of 400 µm. Murine melanoma cell cultures were irradiated with a target dose of approximately 65 Gy at a mean photon energy of ∼30 keV with a dose rate of 70 Gy s-1 and a peak-to-valley dose of ∼123. This work demonstrated a melanoma cell reduction of approximately 80% after MBI. It is suggested that, while a high energy is essential to achieve high dose rates in order to deposit high treatment doses in a short time in a deep-seated target, for in vitro studies and for the treatment of superficial tumours a spectrum in the lower energy range might be equally suitable or even advantageous.


Assuntos
Fótons , Síncrotrons , Animais , Camundongos , Método de Monte Carlo
6.
Sci Rep ; 8(1): 362, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321544

RESUMO

Unlike conventional x-ray attenuation one of the advantages of phase contrast x-ray imaging is its capability of extracting useful physical properties of the sample. In particular the possibility to obtain information from small angle scattering about unresolvable structures with sub-pixel resolution sensitivity has drawn attention for both medical and material science applications. We report on a novel algorithm for the analyzer based x-ray phase contrast imaging modality, which allows the robust separation of absorption, refraction and scattering effects from three measured x-ray images. This analytical approach is based on a simple Gaussian description of the analyzer transmission function and this method is capable of retrieving refraction and small angle scattering angles in the full angular range typical of biological samples. After a validation of the algorithm with a simulation code, which demonstrated the potential of this highly sensitive method, we have applied this theoretical framework to experimental data on a phantom and biological tissues obtained with synchrotron radiation. Owing to its extended angular acceptance range the algorithm allows precise assessment of local scattering distributions at biocompatible radiation doses, which in turn might yield a quantitative characterization tool with sufficient structural sensitivity on a submicron length scale.

7.
J Synchrotron Radiat ; 25(Pt 1): 189-203, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29271768

RESUMO

The International Atomic Energy Agency (IAEA) jointly with the Elettra Sincrotrone Trieste (EST) operates a multipurpose X-ray spectrometry endstation at the X-ray Fluorescence beamline (10.1L). The facility has been available to external users since the beginning of 2015 through the peer-review process of EST. Using this collaboration framework, the IAEA supports and promotes synchrotron-radiation-based research and training activities for various research groups from the IAEA Member States, especially those who have limited previous experience and resources to access a synchrotron radiation facility. This paper aims to provide a broad overview about various analytical capabilities, intrinsic features and performance figures of the IAEA X-ray spectrometry endstation through the measured results. The IAEA-EST endstation works with monochromatic X-rays in the energy range 3.7-14 keV for the Elettra storage ring operating at 2.0 or 2.4 GeV electron energy. It offers a combination of different advanced analytical probes, e.g. X-ray reflectivity, X-ray absorption fine-structure measurements, grazing-incidence X-ray fluorescence measurements, using different excitation and detection geometries, and thereby supports a comprehensive characterization for different kinds of nanostructured and bulk materials.

8.
Sci Rep ; 5: 18156, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26657471

RESUMO

Acellular scaffolds obtained via decellularization are a key instrument in regenerative medicine both per se and to drive the development of future-generation synthetic scaffolds that could become available off-the-shelf. In this framework, imaging is key to the understanding of the scaffolds' internal structure as well as their interaction with cells and other organs, including ideally post-implantation. Scaffolds of a wide range of intricate organs (esophagus, lung, liver and small intestine) were imaged with x-ray phase contrast computed tomography (PC-CT). Image quality was sufficiently high to visualize scaffold microarchitecture and to detect major anatomical features, such as the esophageal mucosal-submucosal separation, pulmonary alveoli and intestinal villi. These results are a long-sought step for the field of regenerative medicine; until now, histology and scanning electron microscopy have been the gold standard to study the scaffold structure. However, they are both destructive: hence, they are not suitable for imaging scaffolds prior to transplantation, and have no prospect for post-transplantation use. PC-CT, on the other hand, is non-destructive, 3D and fully quantitative. Importantly, not only do we demonstrate achievement of high image quality at two different synchrotron facilities, but also with commercial x-ray equipment, which makes the method available to any research laboratory.


Assuntos
Esôfago/anatomia & histologia , Intestino Delgado/anatomia & histologia , Fígado/anatomia & histologia , Pulmão/anatomia & histologia , Tomografia Computadorizada por Raios X/métodos , Animais , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Coelhos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Síncrotrons , Engenharia Tecidual/métodos , Alicerces Teciduais , Tomografia Computadorizada por Raios X/instrumentação
9.
Nanomedicine ; 10(8): 1821-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24954384

RESUMO

The use of alginate based microcapsules to deliver drugs and cells with a minimal host interaction is increasingly being proposed. A proficient method to track the position of the microcapsules during such therapies, particularly if they are amenable to commonly used instrumentation, would greatly help the development of such treatments. Here we propose to label the microcapsules with gold nanoparticles to provide a bright contrast on small animal x-ray micro-CT systems enabling single microcapsule detection. The microcapsules preparation is based on a simple protocol using inexpensive compounds. This, combined with the widespread availability of micro-CT apparatus, renders our method more accessible compared with other methods. Our labeled microcapsules showed good mechanical stability and low cytotoxicity in-vitro. Our post-mortem rodent model data strongly suggest that the high signal intensity generated by the labeled microcapsules permits the use of a reduced radiation dose yielding a method fully compatible with longitudinal in-vivo studies. FROM THE CLINICAL EDITOR: The authors of this study report the development of a micro-CT based tracking method of alginate-based microcapsules by incorporating gold nanoparticles in the microcapsules. They demonstrate the feasibility of this system in rodent models, where due to the high signal intensity, even reduced radiation dose is sufficient to track these particles, providing a simple and effective method to track these commonly used microcapsules and allowing longitudinal studies.


Assuntos
Alginatos/química , Cápsulas/química , Ouro/química , Nanopartículas Metálicas/química , Animais , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Tomografia Computadorizada por Raios X
10.
Philos Trans A Math Phys Eng Sci ; 372(2010): 20130127, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24470419

RESUMO

The mouse model of osteoarthritis (OA) has been recognized as the most promising research tool for the identification of new OA therapeutic targets. However, this model is currently limited by poor throughput, dependent on the extremely time-consuming histopathology assessment of the articular cartilage (AC). We have recently shown that AC in the rat tibia can be imaged both in air and in saline solution using a laboratory system based on coded-aperture X-ray phase-contrast imaging (CAXPCi). Here, we explore ways to extend the methodology for imaging the much thinner AC of the mouse, by means of gold-standard synchrotron-based phase-contrast methods. Specifically, we have used analyser-based phase-contrast micro-computed tomography (micro-CT) for its high sensitivity to faint phase changes, coupled with a high-resolution (4.5 µm pixel) detector. Healthy, diseased (four weeks post induction of OA) and artificially damaged mouse AC was imaged at the Elettra synchrotron in Trieste, Italy, using the above method. For validation, we used conventional micro-CT combined with radiopaque soft-tissue staining and standard histomorphometry. We show that mouse cartilage can be visualized correctly by means of the synchrotron method. This suggests that: (i) further developments of the laboratory-based CAXPCi system, especially in terms of pushing the resolution limits, might have the potential to resolve mouse AC ex vivo and (ii) additional improvements may lead to a new generation of CAXPCi micro-CT scanners which could be used for in vivo longitudinal pre-clinical imaging of soft tissue at resolutions impossible to achieve by current MRI technology.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Meios de Contraste , Laboratórios , Síncrotrons , Microtomografia por Raio-X/métodos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite/diagnóstico por imagem , Microtomografia por Raio-X/instrumentação
11.
Opt Express ; 21(16): 19401-11, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23938856

RESUMO

A three-image method to extract absorption, refraction and scattering information for hard x-ray grating interferometry is presented. The method comprises a post-processing approach alternative to the conventional phase stepping procedure and is inspired by a similar three-image technique developed for analyzer-based x-ray imaging. Results obtained with this algorithm are quantitatively comparable with phase-stepping. This method can be further extended to samples with negligible scattering, where only two images are needed to separate absorption and refraction signal. Thanks to the limited number of images required, this technique is a viable route to bio-compatible imaging with x-ray grating interferometer. In addition our method elucidates and strengthens the formal and practical analogies between grating interferometry and the (non-interferometric) diffraction enhanced imaging technique.


Assuntos
Algoritmos , Interferometria , Fenômenos Ópticos , Absorção , Animais , Osso e Ossos/anatomia & histologia , Bovinos , Raios X
12.
Nanoscale ; 5(8): 3337-45, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23467621

RESUMO

In the present study complementary high-resolution imaging techniques on different length scales are applied to elucidate a cellular loading protocol of gold nanoparticles and subsequently its impact on long term and high-resolution cell-tracking utilizing X-ray technology. Although demonstrated for malignant cell lines the results can be applied to non-malignant cell lines as well. In particular the accumulation of the gold marker per cell has been assessed quantitatively by virtue of electron microscopy, two-dimensional X-ray fluorescence imaging techniques and X-ray CT with micrometric and sub-micrometric resolution. Moreover, utilizing these techniques the three dimensional distribution of the incorporated nanoparticles, which are sequestered in lysosomes as a permanent marker, could be determined. The latter allowed elucidation of the gold partition during mitosis and the cell size, which subsequently enabled us to define the optimal instrument settings of a compact microCT system to visualize gold loaded cells. The results obtained demonstrate the feasibility of cell-tracking using X-ray CT with compact sources.


Assuntos
Rastreamento de Células/métodos , Ouro/química , Nanopartículas Metálicas/química , Análise de Célula Única/métodos , Animais , Tamanho Celular , Rastreamento de Células/instrumentação , Células Cultivadas , Masculino , Microscopia Eletrônica de Varredura , Mitose , Ratos , Ratos Wistar , Sensibilidade e Especificidade , Transplante Heterólogo , Microtomografia por Raio-X , Raios X
13.
Nanomedicine ; 9(2): 284-92, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22841913

RESUMO

The ability to perform cell tracking using x-ray computed tomography combined with gold nanoparticles has been demonstrated recently on ex vivo samples using different malignant and nonmalignant cell lines. Here we proved the concept of the method for in vivo assessment in a small-animal model of malignant brain tumors. The limitations of the method due to radiation dose constraints were investigated using Monte Carlo simulations. Taking into consideration different x-ray entrance doses and the spatial resolution, the visibility of the cell clusters was evaluated. The results of the experiments conducted on mice implanted with F98 tumor cells confirmed the prediction of the Monte Carlo calculations. Small clusters of cells exogenously loaded with gold nanoparticles could be visualized using our in vivo method. FROM THE CLINICAL EDITOR: This article discusses the use of CT-based detection of gold nanoparticle loaded cells of interest in small-animal models of malignant brain tumors, where small clusters of cells loaded with gold nanoparticles could be visualized.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Ouro , Nanopartículas Metálicas , Tomografia Computadorizada por Raios X/métodos , Animais , Linhagem Celular Tumoral , Ouro/análise , Masculino , Nanopartículas Metálicas/análise , Camundongos , Camundongos Nus , Método de Monte Carlo , Ratos
14.
Clin Exp Pharmacol Physiol ; 38(12): 834-45, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21957877

RESUMO

1. Spatially resolved X-ray fluorescence (XRF) spectroscopy with synchrotron radiation is a technique that allows imaging and quantification of chemical elements in biological specimens with high sensitivity. In the present study, we applied XRF techniques at a macro and micro level to carry out drug distribution studies on ex vivo models to confirm the hepatobiliary disposition of the Gd-based magnetic resonance imaging contrast agent B22956/1. 2. Gd presence was selectively quantified allowing the determination of the time dependent disappearance of the drug from blood and its hepatic accumulation in mice after administration. Elemental mapping highlighted the drug distribution differences between healthy and diseased livers. XRF microanalyses showed that in CCl(4) -induced hepatitis, B22956/1 has greatly reduced hepatic accumulation, shown as a 20-fold reduction of Gd presence. Furthermore, a significant increase of Fe presence was found in steatotic compared with healthy livers, in line with the disease features. 3. The present results show that XRF might be useful in preclinical pharmacological studies with drugs containing exogenous elements. Furthermore, quantitative and high-sensitivity elemental mapping allows simultaneous detection of chemical variation, showing pathological conditions. This approach was useful in suggesting reduced B22956/1 accumulation in steatotic livers, thus opening possible new diagnostic perspectives for this drug.


Assuntos
Meios de Contraste/farmacocinética , Gadolínio/farmacocinética , Fígado/metabolismo , Imageamento por Ressonância Magnética/métodos , Compostos Organometálicos/farmacocinética , Espectrometria por Raios X/métodos , Animais , Fígado Gorduroso/diagnóstico , Fígado Gorduroso/metabolismo , Feminino , Hepatite/diagnóstico , Hepatite/metabolismo , Ferro/análise , Camundongos , Camundongos Endogâmicos CBA
15.
Radiology ; 259(3): 684-94, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21436089

RESUMO

PURPOSE: To prospectively evaluate the diagnostic contribution of mammography with synchrotron radiation in patients with questionable or suspicious breast abnormalities identified at combined digital mammography (DM) and ultrasonography (US). MATERIALS AND METHODS: The ethics committee approved this prospective study, and written informed consent was obtained from all patients. Mammography with synchrotron radiation was performed with a phase-detection technique at a synchrotron radiation laboratory. Forty-nine women who met at least one of the inclusion criteria (palpable mass, focal asymmetry, architectural distortion, or equivocal or suspicious mass at DM; none clarified at US) were enrolled. Forty-seven women (mean age, 57.8 years ± 8.8 [standard deviation]; age range, 43-78 years) completed the study protocol, which involved biopsy or follow-up for 1 year as the reference standard. Breast Imaging Reporting and Data System (BI-RADS) scores of 1-3 were considered to indicate a negative result, while scores 4-5 were considered to indicate a positive result. The visibility of breast abnormalities and the glandular parenchymal structure at DM and at mammography with synchrotron radiation was compared by using the Wilcoxon signed rank test. RESULTS: In 29 of the 31 patients with a final diagnosis of benign entity, mammography with synchrotron radiation yielded BI-RADS scores of 1-3. In 13 of the remaining 16 patients with a final diagnosis of malignancy, mammography with synchrotron radiation yielded BI-RADS scores of 4-5. Therefore, a sensitivity of 81% (13 of 16 patients) and a specificity of 94% (29 of 31 patients) were achieved with use of the described BI-RADS dichotomization system. CONCLUSION: These study results suggest that mammography with synchrotron radiation can be used to clarify cases of questionable or suspicious breast abnormalities identified at DM. SUPPLEMENTAL MATERIAL: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11100745/-/DC1.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mamografia/métodos , Síncrotrons , Adulto , Idoso , Biópsia , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Doses de Radiação , Sensibilidade e Especificidade , Estatísticas não Paramétricas
16.
Nanomedicine ; 7(5): 647-54, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21333753

RESUMO

The ability to track cells in small-animal models of human disease is important because it gives the potential to improve our understanding of the processes of disease progression as well as our understanding of the therapeutic effects of interventions. In this study gold nanoparticles have been used as a permanent marker of implanted normal and malignant cell grafts in combination with a suitable x-ray apparatus. Using x-ray computed tomography the micrometric three-dimensional distribution of these marked cells could be displayed with penetration depth, high cell sensitivity and high spatial resolution in rodent models of human diseases. In principle the method allows quantification of cell numbers at any anatomical location over time in small animals.


Assuntos
Rastreamento de Células/métodos , Ouro/química , Nanopartículas Metálicas/química , Coloração e Rotulagem/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Cabeça/diagnóstico por imagem , Humanos , Células-Tronco Mesenquimais/diagnóstico por imagem , Ratos , Ratos Wistar
17.
Nanoscale ; 2(12): 2826-34, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20949211

RESUMO

In the present study, the in vivo distribution of polyelectrolyte multilayer coated gold nanoparticles is shown, starting from the living animal down to cellular level. The coating was designed with functional moieties to serve as a potential nano drug for prion disease. With near infrared time-domain imaging we followed the biodistribution in mice up to 7 days after intravenous injection of the nanoparticles. The peak concentration in the head of mice was detected between 19 and 24 h. The precise particle distribution in the brain was studied ex vivo by X-ray microtomography, confocal laser and fluorescence microscopy. We found that the particles mainly accumulate in the hippocampus, thalamus, hypothalamus, and the cerebral cortex.


Assuntos
Encéfalo/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Animais , Eletrólitos/química , Humanos , Injeções Intravenosas , Nanopartículas Metálicas/toxicidade , Camundongos , Microscopia de Fluorescência , Albumina Sérica/química , Distribuição Tecidual , Microtomografia por Raio-X
18.
J Synchrotron Radiat ; 15(Pt 6): 606-11, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18955767

RESUMO

When small triangular prisms are arranged in arrays which have an overall appearance like an hourglass (in Italian: clessidra) they can focus X-rays owing to a combined action of diffraction and refraction. From the optical point of view these objects can be regarded as a Fresnel variant of concave transmission lenses. Consequently they can provide larger apertures than purely refractive lenses. However, one has to recognize that clessidra lenses will strongly diffract as the lens structure is periodic in the direction perpendicular to the incident beam. In experiments the diffraction is reduced because it is difficult to illuminate the large apertures with a full spatially coherent wavefront. So the illumination is at best partially coherent. In order to interpret available experimental data for this condition, diffraction theory has been applied appropriately to the clessidra structure, taking into account the limited spatial coherence. The agreement between the theoretical simulations and experimental data is very good, keeping the lens properties at their projected values and allowing for only two free model parameters. The first is the lateral spatial coherence; the second is a lens defect, a rounding of all edges and tips in the structure. Both values obtained from the simulations have been found to be in agreement with expectations.


Assuntos
Desenho Assistido por Computador , Modelos Teóricos , Refratometria/instrumentação , Tomografia de Coerência Óptica/instrumentação , Transdutores , Difração de Raios X/métodos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Espalhamento de Radiação
19.
Eur J Radiol ; 68(3 Suppl): S3-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18635330

RESUMO

A simple generalization of the diffraction enhanced imaging (DEI) technique, called generalized DEI (GDEI), and its application to tomographic imaging are herein presented. In planar imaging, the GDEI algorithm combines three input images (acquired at different analyzer positions) to deliver three parametric images, providing information respectively on absorptive, refractive and ultra-small-angle scattering features of the sample. The application of the same algorithm in computed tomography (CT-GDEI), acquiring three tomographic datasets at different analyzer positions, is formally justified. Experimental tests have been conducted at the SYRMEP beamline of ELETTRA (Trieste, Italy) by means of custom phantoms, featuring absorption, refraction and ultra-small-angle scattering. The results show that CT-GDEI provides a simple way to map the information relative to the three effects in three parametric tomographic images.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Refratometria/métodos , Tomografia Óptica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
J Synchrotron Radiat ; 15(Pt 4): 411-3, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18552435

RESUMO

Clessidra (hour-glass) X-ray lenses have an overall shape of an old hour glass, in which two opposing larger triangular prisms are formed of smaller identical prisms or prism-like objects. In these lenses, absorbing and otherwise optically inactive material was removed with a material-removal strategy similar to that used by Fresnel in the lighthouse lens construction. It is verified that when the single prism rows are incoherently illuminated they can be operated as independent micro-lenses with coinciding image positions for efficient X-ray beam concentration. Experimental data for the line width and the refraction efficiency in one-dimensional focusing are consistent with the expectations. Imperfections in the structures produced by state-of-the-art deep X-ray lithography directed only 35% of the incident intensity away from the image and widened it by just 10% to 125 microm. An array of micro-lenses with easily feasible prism sizes is proposed as an efficient retrofit for the refocusing optics in an existing beamline, where it would provide seven-fold flux enhancement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...