Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34640771

RESUMO

Normal pressure hydrocephalus (NPH) is a chronic and progressive disease that affects predominantly elderly subjects. The most prevalent symptoms are gait disorders, generally determined by visual observation or measurements taken in complex laboratory environments. However, controlled testing environments can have a significant influence on the way subjects walk and hinder the identification of natural walking characteristics. The study aimed to investigate the differences in walking patterns between a controlled environment (10 m walking test) and real-world environment (72 h recording) based on measurements taken via a wearable gait assessment device. We tested whether real-world environment measurements can be beneficial for the identification of gait disorders by performing a comparison of patients' gait parameters with an aged-matched control group in both environments. Subsequently, we implemented four machine learning classifiers to inspect the individual strides' profiles. Our results on twenty young subjects, twenty elderly subjects and twelve NPH patients indicate that patients exhibited a considerable difference between the two environments, in particular gait speed (p-value p=0.0073), stride length (p-value p=0.0073), foot clearance (p-value p=0.0117) and swing/stance ratio (p-value p=0.0098). Importantly, measurements taken in real-world environments yield a better discrimination of NPH patients compared to the controlled setting. Finally, the use of stride classifiers provides promise in the identification of strides affected by motion disorders.


Assuntos
Transtornos Neurológicos da Marcha , Hidrocefalia de Pressão Normal , Idoso , , Marcha , Transtornos Neurológicos da Marcha/diagnóstico , Humanos , Caminhada
2.
IEEE Trans Biomed Eng ; 68(2): 535-544, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32746051

RESUMO

Powered lower limb exoskeletons are a viable solution for people with a spinal cord injury to regain mobility for their daily activities. However, the commonly employed rigid actuation and pre-programmed trajectories increase the risk of falling in case of collisions with external objects. Compliant actuation may reduce forces during collisions, thus protecting hardware and user. However, experimental data of collisions specific to lower limb exoskeletons are not available. In this work, we investigated how a variable stiffness actuator at the knee joint influences collision forces transmitted to the user via the exoskeleton. In a test bench experiment, we compared three configurations of an exoskeleton leg with a variable stiffness knee actuator in (i) compliant or (ii) stiff configurations, and with (iii) a rigid actuator. The peak torque observed at the pelvis was reduced from 260.2 Nm to 116.2 Nm as stiffness decreased. In addition, the mechanical impulse was reduced by a factor of three. These results indicate that compliance in the knee joint of an exoskeleton can be favorable in case of collision and should be considered when designing powered lower limb exoskeletons. Overall, this could decrease the effort necessary to maintain balance after a collision, and improved collision handling in exoskeletons could result in safer use and benefit their usefulness in daily life.


Assuntos
Exoesqueleto Energizado , Fenômenos Biomecânicos , Desenho de Equipamento , Humanos , Articulação do Joelho , Perna (Membro) , Extremidade Inferior , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...