Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunol Lett ; 240: 123-136, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34715236

RESUMO

Intracellular adhesion molecule 1 (ICAM-1) is one of the most extensively studied inducible cell adhesion molecules which is responsible for several immune functions like T cell activation, extravasation, inflammation, etc. The molecule is constitutively expressed over the cell surface and is regulated up / down in response to inflammatory mediators like cellular stress, proinflammatory cytokines, viral infection. These stimuli modulate the expression of ICAM-1 primarily through regulating the ICAM-1 gene transcription. On account of the presence of various binding sites for NF-κB, AP-1, SP-1, and many other transcription factors, the architecture of the ICAM-1 promoter become complex. Transcription factors in union with other transcription factors, coactivators, and suppressors promote their assembly in a stereospecific manner on ICAM-1 promoter which mediates ICAM-1 regulation in response to different stimuli. Along with transcriptional regulation, epigenetic modifications also play a pivotal role in controlling ICAM-1 expression on different cell types. In this review, we summarize the regulation of ICAM-1 expression both at the transcriptional as well as post-transcriptional level with an emphasis on transcription factors and signaling pathways involved.


Assuntos
Regulação da Expressão Gênica/imunologia , Molécula 1 de Adesão Intercelular/imunologia , Ativação Linfocitária , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Transcrição Gênica/imunologia , Humanos , Elementos de Resposta/imunologia , Fatores de Transcrição/imunologia
2.
Hum Immunol ; 82(2): 103-120, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33358455

RESUMO

The purpose of this research is to identify and characterize deleterious genetic variants in the co-stimulatory ligand B7-1, also known as the human cluster of differentiation CD80 marker. The B7-1 ligand and the major histocompatibility complex class II (MHC II) molecules are the main determinants that provide B-cells the required competency to act as antigen presenting cells. For this, participation of both MHC class II molecules and CD80 is required. The interaction of the CD80 ligand with CD28 on the surface 7 of TH cells plays a key role in the activation of TH cells and progression of B cells through the S phase, hence, leading to their proliferation in mitosis. A set of 2313 genetic variants in the B7-1 ligand have been mapped and retrieved from dbSNP database. Subsequently, 150 non-synonymous single nucleotide polymorphisms (nsSNPs) were mapped and subjected to the sequence and structural homology based predictions, which were further analyzed for protein stability and the disease phenotypes. Finally, we identified 7 potentially damaging nsSNPs in the B7-1 ligand that may affect its interaction with the cognitive receptor CD28, hence, may also interfere with TH cell activation and B cell proliferation. We propose that subsequent experimental analyses (stability, expression and interactions) on these proteins can provide a deep understanding about the effect of these variants on the structure and function of CD80.


Assuntos
Linfócitos B/imunologia , Antígeno B7-1/genética , Antígenos CD28/metabolismo , Ativação Linfocitária/genética , Linfócitos T Auxiliares-Indutores/imunologia , Imunidade Adaptativa/genética , Antígeno B7-1/metabolismo , Proliferação de Células/genética , Biologia Computacional , Conjuntos de Dados como Assunto , Humanos , Mitose/imunologia , Polimorfismo de Nucleotídeo Único/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
3.
PLoS One ; 15(6): e0234246, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32502225

RESUMO

INTRODUCTION: Esophageal atresia with or without tracheoesophageal fistula (EA/TEF) occurs approximately 1 in 3.500 live births representing the most common malformation of the upper digestive tract. Only half a century ago, EA/TEF was fatal among affected newborns suggesting that the steady birth prevalence might in parts be due to mutational de novo events in genes involved in foregut development. METHODS: To identify mutational de novo events in EA/TEF patients, we surveyed the exome of 30 case-parent trios. Identified and confirmed de novo variants were prioritized using in silico prediction tools. To investigate the embryonic role of genes harboring prioritized de novo variants we performed targeted analysis of mouse transcriptome data of esophageal tissue obtained at the embryonic day (E) E8.5, E12.5, and postnatal. RESULTS: In total we prioritized 14 novel de novo variants in 14 different genes (APOL2, EEF1D, CHD7, FANCB, GGT6, KIAA0556, NFX1, NPR2, PIGC, SLC5A2, TANC2, TRPS1, UBA3, and ZFHX3) and eight rare de novo variants in eight additional genes (CELSR1, CLP1, GPR133, HPS3, MTA3, PLEC, STAB1, and PPIP5K2). Through personal communication during the project, we identified an additional EA/TEF case-parent trio with a rare de novo variant in ZFHX3. In silico prediction analysis of the identified variants and comparative analysis of mouse transcriptome data of esophageal tissue obtained at E8.5, E12.5, and postnatal prioritized CHD7, TRPS1, and ZFHX3 as EA/TEF candidate genes. Re-sequencing of ZFHX3 in additional 192 EA/TEF patients did not identify further putative EA/TEF-associated variants. CONCLUSION: Our study suggests that rare mutational de novo events in genes involved in foregut development contribute to the development of EA/TEF.


Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos/metabolismo , Atresia Esofágica/genética , Exoma/genética , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas Repressoras/genética , Fístula Traqueoesofágica/genética , Animais , Humanos , Camundongos , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...