Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37292940

RESUMO

We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Those germ cells showing a Cre-induced loss of ARID1A were arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Consistent with this defect, mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. By investigating potential mechanisms underlying these anomalies, we identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA Meiotic Recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.

2.
G3 (Bethesda) ; 12(6)2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35416979

RESUMO

RBBP4 is a subunit of the chromatin remodeling complexes known as Polycomb repressive complex 2 and histone deacetylase 1/2-containing complexes. These complexes are responsible for histone H3 lysine 27 methylation and deacetylation, respectively. How RBBP4 modulates the functions of these complexes remains largely unknown. We generated viable Rbbp4 mutant alleles in mouse embryonic stem cell lines by CRISPR-Cas9. The mutations disrupted Polycomb repressive complex 2 assembly and H3K27me3 establishment on target chromatin and altered histone H3 lysine 27 acetylation genome wide. Moreover, Rbbp4 mutant cells underwent dramatic changes in transcriptional profiles closely tied to the deregulation of H3K27ac. The alteration of H3K27ac due to RBBP4 dysfunction occurred on numerous cis-regulatory elements, especially putative enhancers. These data suggest that RBBP4 plays a central role in regulating histone H3 lysine 27 methylation and acetylation to modulate gene expression.


Assuntos
Histonas , Lisina , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Acetilação , Animais , Expressão Gênica , Genômica , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Complexo Repressor Polycomb 2/genética
3.
Nat Commun ; 12(1): 6581, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772938

RESUMO

The mammalian SWI/SNF nucleosome remodeler is essential for spermatogenesis. Here, we identify a role for ARID2, a PBAF (Polybromo - Brg1 Associated Factor)-specific subunit, in meiotic division. Arid2cKO spermatocytes arrest at metaphase-I and are deficient in spindle assembly, kinetochore-associated Polo-like kinase1 (PLK1), and centromeric targeting of Histone H3 threonine3 phosphorylation (H3T3P) and Histone H2A threonine120 phosphorylation (H2AT120P). By determining ARID2 and BRG1 genomic associations, we show that PBAF localizes to centromeres and promoters of genes known to govern spindle assembly and nuclear division in spermatocytes. Consistent with gene ontology of target genes, we also identify a role for ARID2 in centrosome stability. Additionally, misexpression of genes such as Aurkc and Ppp1cc (Pp1γ), known to govern chromosome segregation, potentially compromises the function of the chromosome passenger complex (CPC) and deposition of H3T3P, respectively. Our data support a model where-in PBAF activates genes essential for meiotic cell division.


Assuntos
Cromatina , Mamíferos/genética , Meiose , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , DNA Helicases/metabolismo , Inativação Gênica , Histonas/metabolismo , Masculino , Metáfase , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Espermatócitos/metabolismo , Espermatogênese/genética , Fatores de Transcrição/genética , Transcriptoma , Quinase 1 Polo-Like
4.
Development ; 146(19)2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043422

RESUMO

A deficiency in BRG1, the catalytic subunit of the SWI/SNF chromatin remodeling complex, results in a meiotic arrest during spermatogenesis. Here, we explore the causative mechanisms. BRG1 is preferentially enriched at active promoters of genes essential for spermatogonial pluripotency and meiosis. In contrast, BRG1 is also associated with the repression of somatic genes. Chromatin accessibility at these target promoters is dependent upon BRG1. These results favor a model in which BRG1 coordinates spermatogenic transcription to ensure meiotic progression. In spermatocytes, BRG1 interacts with SCML2, a testis-specific PRC1 factor that is associated with the repression of somatic genes. We present evidence to suggest that BRG1 and SCML2 concordantly regulate genes during meiosis. Furthermore, BRG1 is required for the proper localization of SCML2 and its associated deubiquitylase, USP7, to the sex chromosomes during pachynema. SCML2-associated mono-ubiquitylation of histone H2A lysine 119 (H2AK119ub1) and acetylation of histone lysine 27 (H3K27ac) are elevated in Brg1cKO testes. Coincidentally, the PRC1 ubiquitin ligase RNF2 is activated while a histone H2A/H2B deubiquitylase USP3 is repressed. Thus, BRG1 impacts the male epigenome by influencing the localization and expression of epigenetic modifiers. This mechanism highlights a novel paradigm of cooperativity between SWI/SNF and PRC1.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Mamíferos/genética , Proteínas do Grupo Polycomb/metabolismo , Espermatogônias/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Acetilação , Animais , Cromatina/metabolismo , DNA Helicases/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Código das Histonas , Lisina/metabolismo , Masculino , Meiose/genética , Camundongos , Modelos Genéticos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica/genética , Espermatogênese/genética
5.
Trends Neurosci ; 39(2): 100-113, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26830113

RESUMO

Lying at the intersection between neurobiology and epigenetics, Rett syndrome (RTT) has garnered intense interest in recent years, not only from a broad range of academic scientists, but also from the pharmaceutical and biotechnology industries. In addition to the critical need for treatments for this devastating disorder, optimism for developing RTT treatments derives from a unique convergence of factors, including a known monogenic cause, reversibility of symptoms in preclinical models, a strong clinical research infrastructure highlighted by an NIH-funded natural history study and well-established clinics with significant patient populations. Here, we review recent advances in understanding the biology of RTT, particularly promising preclinical findings, lessons from past clinical trials, and critical elements of trial design for rare disorders.


Assuntos
Síndrome de Rett/genética , Síndrome de Rett/terapia , Pesquisa Translacional Biomédica/tendências , Animais , Ensaios Clínicos como Assunto/métodos , Epigênese Genética/genética , Humanos , Mutação/genética , Síndrome de Rett/diagnóstico , Pesquisa Translacional Biomédica/métodos
6.
Biol Reprod ; 94(1): 8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26607718

RESUMO

The ability to faithfully transmit genetic information across generations via the germ cells is a critical aspect of mammalian reproduction. The process of germ cell development requires a number of large-scale modulations of chromatin within the nucleus. One such occasion arises during meiotic recombination, when hundreds of DNA double-strand breaks are induced and subsequently repaired, enabling the transfer of genetic information between homologous chromosomes. The inability to properly repair DNA damage is known to lead to an arrest in the developing germ cells and sterility within the animal. Chromatin-remodeling activity, and in particular the BRG1 subunit of the SWI/SNF complex, has been shown to be required for successful completion of meiosis. In contrast, remodeling complexes of the ISWI and CHD families are required for postmeiotic processes. Little is known regarding the contribution of the INO80 family of chromatin-remodeling complexes, which is a particularly interesting candidate due to its well described functions during DNA double-strand break repair. Here we show that INO80 is expressed in developing spermatocytes during the early stages of meiotic prophase I. Based on this information, we used a conditional allele to delete the INO80 core ATPase subunit, thereby eliminating INO80 chromatin-remodeling activity in this lineage. The loss of INO80 resulted in an arrest during meiosis associated with a failure to repair DNA damage during meiotic recombination.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Cromatina/genética , Cromatina/fisiologia , Meiose/genética , Meiose/fisiologia , Espermatogênese/genética , Espermatogênese/fisiologia , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/metabolismo , Animais , Montagem e Desmontagem da Cromatina , Pareamento Cromossômico/genética , Pareamento Cromossômico/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA , Masculino , Camundongos , Camundongos Knockout , Recombinação Genética , Espermatócitos , Testículo/citologia
7.
RNA Biol ; 12(10): 1088-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26367502

RESUMO

The different dose of X chromosomes in males and females produces a potentially fatal imbalance in X-linked gene products. This imbalance is addressed by dosage compensation, a process that modulates expression from an entire X chromosome in one sex. Dosage compensation acts on thousands of genes with disparate expression patterns. Both flies and mammals accomplish this with remarkable specificity by targeting epigenetic chromatin modifications to a single chromosome. Long noncoding RNAs that are expressed from the X chromosome are essential elements of the targeting mechanism in both lineages. We recently discovered that the siRNA pathway, as well as small RNA from satellite repeats that are strikingly enriched on the fly X chromosome, also promote X recognition. In this article we review the current understanding of X recognition in flies and discuss potential mechanisms by which the siRNA pathway, repetitive elements and long noncoding RNAs might cooperate to promote X recognition.


Assuntos
Mecanismo Genético de Compensação de Dose , RNA Longo não Codificante/genética , Cromossomo X/genética , Animais , Cromatina/genética , Drosophila melanogaster , Epigênese Genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , RNA Longo não Codificante/biossíntese , RNA Interferente Pequeno/genética
8.
Development ; 142(17): 2972-80, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26209650

RESUMO

Meiotic silencing of unpaired chromatin (MSUC) occurs during the first meiotic prophase, as chromosomes that fail to pair are sequestered into a transcriptionally repressive nuclear domain. This phenomenon is exemplified by the heterologous sex chromosomes of male mammals, where the ATR DNA damage response kinase is crucial for this silencing event. However, the mechanisms underlying the initiation of MSUC remain unknown. Here, we show that essential components of ATR signaling in murine somatic cells are spatially confined to unpaired chromosomes in spermatocytes, including the ATR-dependent phosphorylation of the single-stranded DNA (ssDNA)-binding complex replication protein A (RPA) and the checkpoint kinase CHK1. These observations support a model in which ssDNA plays a central role in the recruitment of ATR during MSUC, and provide a link to meiotic progression through activation of CHK1.


Assuntos
Pareamento Cromossômico , Cromossomos de Mamíferos/metabolismo , Transdução de Sinais , Espermatócitos/metabolismo , Animais , Especificidade de Anticorpos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Células Cultivadas , Quinase 1 do Ponto de Checagem , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/metabolismo , Masculino , Meiose , Camundongos , Fosforilação , Fosfosserina/metabolismo , Proteínas Quinases/metabolismo , Transporte Proteico , Proteína de Replicação A/metabolismo , Cromossomos Sexuais/metabolismo
9.
Proc Natl Acad Sci U S A ; 111(46): 16460-5, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25368194

RESUMO

Highly differentiated sex chromosomes create a lethal imbalance in gene expression in one sex. To accommodate hemizygosity of the X chromosome in male fruit flies, expression of X-linked genes increases twofold. This is achieved by the male- specific lethal (MSL) complex, which modifies chromatin to increase expression. Mutations that disrupt the X localization of this complex decrease the expression of X-linked genes and reduce male survival. The mechanism that restricts the MSL complex to X chromatin is not understood. We recently reported that the siRNA pathway contributes to localization of the MSL complex, raising questions about the source of the siRNAs involved. The X-linked 1.688 g/cm(3) satellite related repeats (1.688(X) repeats) are restricted to the X chromosome and produce small RNA, making them an attractive candidate. We tested RNA from these repeats for a role in dosage compensation and found that ectopic expression of single-stranded RNAs from 1.688(X) repeats enhanced the male lethality of mutants with defective X recognition. In contrast, expression of double-stranded hairpin RNA from a 1.688(X) repeat generated abundant siRNA and dramatically increased male survival. Consistent with improved survival, X localization of the MSL complex was largely restored in these males. The striking distribution of 1.688(X) repeats, which are nearly exclusive to the X chromosome, suggests that these are cis-acting elements contributing to identification of X chromatin.


Assuntos
Drosophila melanogaster/genética , RNA Interferente Pequeno/fisiologia , Sequências Repetitivas de Ácido Nucleico , Cromossomo X/genética , Animais , Animais Geneticamente Modificados , Pareamento de Bases , Sequência de Bases , Mapeamento Cromossômico , DNA Satélite/genética , Proteínas de Ligação a DNA/análise , Mecanismo Genético de Compensação de Dose , Drosophila/classificação , Drosophila/genética , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/ultraestrutura , Eucromatina/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Larva , Masculino , Dados de Sequência Molecular , Proteínas Nucleares/análise , Interferência de RNA , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Sequências de Repetição em Tandem , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Transgenes
10.
G3 (Bethesda) ; 4(1): 155-62, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24281425

RESUMO

Methods for altering the sequence of endogenous Drosophila melanogaster genes remain labor-intensive. We have tested a relatively simple strategy that enables the introduction of engineered mutations in the vicinity of existing P-elements. This method was used to generate useful alleles of the roX1 gene, which produces a noncoding RNA involved in dosage compensation. The desired change was first introduced into a genomic clone of roX1 and transgenic flies were generated that carry this sequence in a P-element. Targeted transposition was then used to move the P-element into roX1. Remobilization of the targeted insertion produced large numbers of offspring carrying chromosomes that had precisely introduced the engineered sequences into roX1. We postulate that this occurred by gap repair, using the P-element on the sister chromatid as template. This strategy was used to introduce six MS2 loops into the roX1 gene (roX1(MS2-6)), enabling detection of roX1 RNA by a MCP-GFP fusion protein in embryos. The roX1(MS2-6) remains under the control of the authentic promoter and within the correct genomic context, features expected to contribute to normal roX1 function. The ability to replace relatively large blocks of sequence suggests that this method will be of general use.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Conversão Gênica , Fatores de Transcrição/genética , Alelos , Animais , Animais Geneticamente Modificados , Cromátides/genética , Cromátides/metabolismo , Elementos de DNA Transponíveis , Proteínas de Drosophila/análise , Embrião não Mamífero/metabolismo , Feminino , Hibridização in Situ Fluorescente , Masculino , Proteínas Nucleares/genética , RNA não Traduzido/metabolismo , Fatores de Transcrição/análise
11.
Genetics ; 191(3): 1023-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22554892

RESUMO

Sex-chromosome dosage compensation requires selective identification of X chromatin. How this occurs is not fully understood. We show that small interfering RNA (siRNA) mutations enhance the lethality of Drosophila males deficient in X recognition and partially rescue females that inappropriately dosage-compensate. Our findings are consistent with a role for siRNA in selective recognition of X chromatin.


Assuntos
Mecanismo Genético de Compensação de Dose/genética , Drosophila melanogaster/genética , RNA Interferente Pequeno/genética , Cromossomo X/genética , Animais , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Feminino , Técnicas de Silenciamento de Genes , Masculino , Mutação , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
12.
BMC Biol ; 8: 105, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20673338

RESUMO

BACKGROUND: CTCF is a versatile zinc finger DNA-binding protein that functions as a highly conserved epigenetic transcriptional regulator. CTCF is known to act as a chromosomal insulator, bind promoter regions, and facilitate long-range chromatin interactions. In mammals, CTCF is active in the regulatory regions of some genes that exhibit genomic imprinting, acting as insulator on only one parental allele to facilitate parent-specific expression. In Drosophila, CTCF acts as a chromatin insulator and is thought to be actively involved in the global organization of the genome. RESULTS: To determine whether CTCF regulates imprinting in Drosophila, we generated CTCF mutant alleles and assayed gene expression from the imprinted Dp(1;f)LJ9 mini-X chromosome in the presence of reduced CTCF expression. We observed disruption of the maternal imprint when CTCF levels were reduced, but no effect was observed on the paternal imprint. The effect was restricted to maintenance of the imprint and was specific for the Dp(1;f)LJ9 mini-X chromosome. CONCLUSIONS: CTCF in Drosophila functions in maintaining parent-specific expression from an imprinted domain as it does in mammals. We propose that Drosophila CTCF maintains an insulator boundary on the maternal X chromosome, shielding genes from the imprint-induced silencing that occurs on the paternally inherited X chromosome. See commentary: http://www.biomedcentral.com/1741-7007/8/104.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Impressão Genômica , Proteínas Repressoras/genética , Alelos , Animais , Fator de Ligação a CCCTC , Regulação da Expressão Gênica , Cromossomo X
13.
Fly (Austin) ; 4(1): 48-52, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20081359

RESUMO

Germ line imprinting produces parent-specific differences in the behavior of chromosomes or expression of genes. Epigenetic marks, placed on chromosomes in the parental germ line, govern classical imprinted effects such as chromosomal inactivation, chromosome elimination and mono-allelic expression. Germ line imprinting occurs in insects, plants and mammals. Several Drosophila systems display imprinted effects. In spite of this, many aspects of imprinting in flies, including the normal function of this process, remain mysterious. Transgenerational inheritance of epigenetic marks is a powerful force in genome regulation. Elucidation of the mechanism of imprint establishment and maintenance in a model organism, such as Drosophila, is thus of great interest. In this review we summarize the primary systems that have been used to study imprinting in flies and speculate on the origin and biological function of imprinting in Drosophila.


Assuntos
Drosophila/genética , Impressão Genômica , Animais , Células Germinativas
14.
Genetics ; 183(3): 811-20, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19704014

RESUMO

Drosophila melanogaster males have a well-characterized regulatory system that increases X-linked gene expression. This essential process restores the balance between X-linked and autosomal gene products in males. A complex composed of the male-specific lethal (MSL) proteins and RNA is recruited to the body of transcribed X-linked genes where it modifies chromatin to increase expression. The RNA components of this complex, roX1 and roX2 (RNA on the X1, RNA on the X2), are functionally redundant. Males mutated for both roX genes have dramatically reduced survival. We show that reversal of sex chromosome inheritance suppresses lethality in roX1 roX2 males. Genetic tests indicate that the effect on male survival depends upon the presence and source of the Y chromosome, revealing a germ line imprint that influences dosage compensation. Conventional paternal transmission of the Y chromosome enhances roX1 roX2 lethality, while maternal transmission of the Y chromosome suppresses lethality. roX1 roX2 males with both maternal and paternal Y chromosomes have very low survival, indicating dominance of the paternal imprint. In an otherwise wild-type male, the Y chromosome does not appreciably affect dosage compensation. The influence of the Y chromosome, clearly apparent in roX1 roX2 mutants, thus requires a sensitized genetic background. We believe that the Y chromosome is likely to act through modulation of a process that is defective in roX1 roX2 mutants: X chromosome recognition or chromatin modification by the MSL complex.


Assuntos
Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Cromossomo Y/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Imuno-Histoquímica , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Modelos Genéticos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Cromossomo X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...