Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 30(7): 1033-1039, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37095205

RESUMO

Immunoglobulin Fc receptors are cell surface transmembrane proteins that bind to the Fc constant region of antibodies and play critical roles in regulating immune responses by activation of immune cells, clearance of immune complexes and regulation of antibody production. FcµR is the immunoglobulin M (IgM) antibody isotype-specific Fc receptor involved in the survival and activation of B cells. Here we reveal eight binding sites for the human FcµR immunoglobulin domain on the IgM pentamer by cryogenic electron microscopy. One of the sites overlaps with the binding site for the polymeric immunoglobulin receptor (pIgR), but a different mode of FcµR binding explains its antibody isotype specificity. Variation in FcµR binding sites and their occupancy reflects the asymmetry of the IgM pentameric core and the versatility of FcµR binding. The complex explains engagement with polymeric serum IgM and the monomeric IgM B-cell receptor (BCR).


Assuntos
Linfócitos B , Receptores Fc , Humanos , Receptores Fc/metabolismo , Linfócitos B/metabolismo , Fragmentos Fc das Imunoglobulinas , Imunoglobulina M/metabolismo , Sítios de Ligação
2.
Cell Rep ; 23(8): 2342-2353, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29791846

RESUMO

B cell responses are regulated by antigen acquisition, processing, and presentation to helper T cells. These functions are thought to depend on contractile activity of non-muscle myosin IIa. Here, we show that B cell-specific deletion of the myosin IIa heavy chain reduced the numbers of bone marrow B cell precursors and splenic marginal zone, peritoneal B1b, and germinal center B cells. In addition, myosin IIa-deficient follicular B cells acquired an activated phenotype and were less efficient in chemokinesis and extraction of membrane-presented antigens. Moreover, myosin IIa was indispensable for cytokinesis. Consequently, mice with myosin IIa-deficient B cells harbored reduced serum immunoglobulin levels and did not mount robust antibody responses when immunized. Altogether, these data indicate that myosin IIa is a negative regulator of B cell activation but a positive regulator of antigen acquisition from antigen-presenting cells and that myosin IIa is essential for B cell development, proliferation, and antibody responses.


Assuntos
Formação de Anticorpos/imunologia , Antígenos/metabolismo , Linfócitos B/citologia , Linfócitos B/imunologia , Ativação Linfocitária/imunologia , Miosina não Muscular Tipo IIA/metabolismo , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Membrana Celular/metabolismo , Movimento Celular , Proliferação de Células , Citocinese , Endocitose , Camundongos Endogâmicos C57BL , Peritônio/citologia , Receptores de Antígenos de Linfócitos B/metabolismo , Solubilidade , Baço/citologia
3.
Front Mol Biosci ; 2: 2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25988170

RESUMO

Ataxin-3, the protein responsible for spinocerebellar ataxia type-3, is a cysteine protease that specifically cleaves poly-ubiquitin chains and participates in the ubiquitin proteasome pathway. The enzymatic activity resides in the N-terminal Josephin domain. An unusual feature of ataxin-3 is its low enzymatic activity especially for mono-ubiquitinated substrates and short ubiquitin chains. However, specific ubiquitination at lysine 117 in the Josephin domain activates ataxin-3 through an unknown mechanism. Here, we investigate the effects of K117 ubiquitination on the structure and enzymatic activity of the protein. We show that covalently linked ubiquitin rests on the Josephin domain, forming a compact globular moiety and occupying a ubiquitin binding site previously thought to be essential for substrate recognition. In doing so, ubiquitination enhances enzymatic activity by locking the enzyme in an activated state. Our results indicate that ubiquitin functions both as a substrate and as an allosteric regulatory factor. We provide a novel example in which a conformational switch controls the activity of an enzyme that mediates deubiquitination.

4.
PeerJ ; 2: e323, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24711972

RESUMO

The neurodegenerative disease spinocerebellar ataxia type 1 (SCA1) is caused by aggregation and misfolding of the ataxin-1 protein. While the pathology correlates with mutations that lead to expansion of a polyglutamine tract in the protein, other regions contribute to the aggregation process as also non-expanded ataxin-1 is intrinsically aggregation-prone and forms nuclear foci in cell. Here, we have used a combined approach based on FRET analysis, confocal microscopy and in vitro techniques to map aggregation-prone regions other than polyglutamine and to establish the importance of dimerization in self-association/foci formation. Identification of aggregation-prone regions other than polyglutamine could greatly help the development of SCA1 treatment more specific than that based on targeting the low complexity polyglutamine region.

5.
Biomol NMR Assign ; 8(2): 325-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23853075

RESUMO

Ataxin-1 is the protein responsible for the genetically-inherited neurodegenerative disease spinocerebellar ataxia type-1 linked to the expansion of a polyglutamine tract within the protein sequence. The AXH domain of ataxin-1 is essential for the protein to function as a transcriptional co-repressor and mediates the majority of the interactions of ataxin-1 with cellular partners, mainly transcriptional regulators. One of the best characterized ataxin-1 functional partners is Capicua (CIC), a transcriptional repressor involved in signalling pathways that regulate mammalian development, tumorigenesis and, through the interaction with ataxin-1, also neurodegeneration. Complex formation of ataxin-1 with CIC is important both for the function of the wild-type protein and for pathogenesis as transcriptional disregulation is observed since the early stages of the development of the disease. Here we report the (1)H, (13)C and (15)N backbone and side-chain chemical shift assignments of the human ataxin-1 AXH domain in complex with a CIC ligand-peptide.


Assuntos
Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Ataxina-1 , Ataxinas , Humanos , Ligantes , Dados de Sequência Molecular , Estrutura Terciária de Proteína
6.
FEBS Open Bio ; 3: 453-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24251111

RESUMO

Protein ubiquitination occurs through formation of an isopeptide bond between the C-terminal glycine of ubiquitin (Ub) and the ɛ-amino group of a substrate lysine residue. This post-translational modification, which occurs through the attachment of single and/or multiple copies of mono-ubiquitin and poly-ubiquitin chains, is involved in crucial cellular events such as protein degradation, cell-cycle regulation and DNA repair. The abnormal functioning of ubiquitin pathways is also implicated in the pathogenesis of several human diseases ranging from cancer to neurodegeneration. However, despite the undoubted biological importance, understanding the molecular basis of how ubiquitination regulates different pathways has up to now been strongly limited by the difficulty of producing the amounts of highly homogeneous samples that are needed for a structural characterization by X-ray crystallography and/or NMR. Here, we report on the production of milligrams of highly pure Josephin mono-ubiquitinated on lysine 117 through large scale in vitro enzymatic ubiquitination. Josephin is the catalytic domain of ataxin-3, a protein responsible for spinocerebellar ataxia type 3. Ataxin-3 is the first deubiquitinating enzyme (DUB) reported to be activated by mono-ubiquitination. We demonstrate that the samples produced with the described method are correctly folded and suitable for structural studies. The protocol allows facile selective labelling of the components. Our results provide an important proof-of-concept that may pave the way to new approaches to the in vitro study of ubiquitinated proteins.

7.
PLoS One ; 8(10): e76456, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24155902

RESUMO

A main challenge for structural biologists is to understand the mechanisms that discriminate between molecular interactions and determine function. Here, we show how partner recognition of the AXH domain of the transcriptional co-regulator ataxin-1 is fine-tuned by a subtle balance between self- and hetero-associations. Ataxin-1 is the protein responsible for the hereditary spinocerebellar ataxia type 1, a disease linked to protein aggregation and transcriptional dysregulation. Expansion of a polyglutamine tract is essential for ataxin-1 aggregation, but the sequence-wise distant AXH domain plays an important aggravating role in the process. The AXH domain is also a key element for non-aberrant function as it intervenes in interactions with multiple protein partners. Previous data have shown that AXH is dimeric in solution and forms a dimer of dimers when crystallized. By solving the structure of a complex of AXH with a peptide from the interacting transcriptional repressor CIC, we show that the dimer interface of AXH is displaced by the new interaction and that, when blocked by the CIC peptide AXH aggregation and misfolding are impaired. This is a unique example in which palindromic self- and hetero-interactions within a sequence with chameleon properties discriminate the partner. We propose a drug design strategy for the treatment of SCA1 that is based on the information gained from the AXH/CIC complex.


Assuntos
Desenho de Fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Motivos de Aminoácidos , Sequência de Aminoácidos , Ataxina-1 , Ataxinas , Cromatografia em Gel , Humanos , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Soluções
8.
PLoS Genet ; 9(7): e1003648, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935513

RESUMO

At least nine dominant neurodegenerative diseases are caused by expansion of CAG repeats in coding regions of specific genes that result in abnormal elongation of polyglutamine (polyQ) tracts in the corresponding gene products. When above a threshold that is specific for each disease the expanded polyQ repeats promote protein aggregation, misfolding and neuronal cell death. The length of the polyQ tract inversely correlates with the age at disease onset. It has been observed that interruption of the CAG tract by silent (CAA) or missense (CAT) mutations may strongly modulate the effect of the expansion and delay the onset age. We have carried out an extensive study in which we have complemented DNA sequence determination with cellular and biophysical models. By sequencing cloned normal and expanded SCA1 alleles taken from our cohort of ataxia patients we have determined sequence variations not detected by allele sizing and observed for the first time that repeat instability can occur even in the presence of CAG interruptions. We show that histidine interrupted pathogenic alleles occur with relatively high frequency (11%) and that the age at onset inversely correlates linearly with the longer uninterrupted CAG stretch. This could be reproduced in a cellular model to support the hypothesis of a linear behaviour of polyQ. We clarified by in vitro studies the mechanism by which polyQ interruption slows down aggregation. Our study contributes to the understanding of the role of polyQ interruption in the SCA1 phenotype with regards to age at disease onset, prognosis and transmission.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Peptídeos/genética , Ataxias Espinocerebelares/genética , Degenerações Espinocerebelares/genética , Expansão das Repetições de Trinucleotídeos/genética , Idade de Início , Alelos , Moléculas de Adesão Celular Neuronais/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Peptídeos/metabolismo , Ataxias Espinocerebelares/patologia , Degenerações Espinocerebelares/patologia
9.
Sci Rep ; 2: 919, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23213356

RESUMO

Anomalous expansion of a polymorphic tract in Ataxin-1 causes the autosomal dominant spinocerebellar ataxia type 1. In addition to polyglutamine expansion, requirements for development of pathology are phosphorylation of serine 776 in Ataxin-1 and nuclear localization of the protein. The phosphorylation state of serine 776 is also crucial for selection of the Ataxin-1 multiple partners. Here, we have used FRET for an in cell study of the interaction of Ataxin-1 with the spliceosome-associated U2AF65 and the adaptor 14-3-3 proteins. Using wild-type Ataxin-1 and Ser776 mutants to a phosphomimetic aspartate and to alanine, we show that U2AF65 binds Ataxin-1 in a Ser776 phosphorylation independent manner whereas 14-3-3 interacts with phosphorylated wild-type Ataxin-1 but not with the mutants. These results indicate that Ser776 acts as the molecular switch that discriminates between normal and aberrant function and that phosphomimetics is not a generally valid approach whose applicability should be carefully validated.


Assuntos
Proteínas 14-3-3/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas/metabolismo , Serina/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Animais , Ataxina-1 , Ataxinas , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Genes Reporter , Humanos , Mutação/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Conformação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Serina/química , Serina/genética , Fator de Processamento U2AF
10.
PLoS One ; 4(12): e8372, 2009 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-20037628

RESUMO

Ataxin-1 (Atx1), a member of the polyglutamine (polyQ) expanded protein family, is responsible for spinocerebellar ataxia type 1. Requirements for developing the disease are polyQ expansion, nuclear localization and phosphorylation of S776. Using a combination of bioinformatics, cell and structural biology approaches, we have identified a UHM ligand motif (ULM), present in proteins associated with splicing, in the C-terminus of Atx1 and shown that Atx1 interacts with and influences the function of the splicing factor U2AF65 via this motif. ULM comprises S776 of Atx1 and overlaps with a nuclear localization signal and a 14-3-3 binding motif. We demonstrate that phosphorylation of S776 provides the molecular switch which discriminates between 14-3-3 and components of the spliceosome. We also show that an S776D Atx1 mutant previously designed to mimic phosphorylation is unsuitable for this aim because of the different chemical properties of the two groups. Our results indicate that Atx1 is part of a complex network of interactions with splicing factors and suggest that development of the pathology is the consequence of a competition of aggregation with native interactions. Studies of the interactions formed by non-expanded Atx1 thus provide valuable hints for understanding both the function of the non-pathologic protein and the causes of the disease.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Fosfosserina/metabolismo , Ribonucleoproteínas/metabolismo , Processamento Alternativo/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Ataxina-1 , Ataxinas , Ligação Competitiva , Calorimetria , Células HeLa , Humanos , Cinética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Peptídeos/química , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Fator de Processamento U2AF
11.
Biopolymers ; 91(12): 1203-14, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19382171

RESUMO

Joseph-Machado is an incurable neurodegenerative disease caused by toxic aggregation of ataxin-3, a ubiquitin-specific cysteine protease, involved in the ubiquitin-proteasome pathway and known to bind poly-ubiquitin chains of four or more subunits. The enzymatic site resides in the N-terminal josephin domain of ataxin-3. We have characterized the ubiquitin-binding properties of josephin and showed that, unexpectedly, josephin contains two contiguous but distinct ubiquitin-binding sites. One is close to the enzymatic cleft and exploits an induced fit mechanism, which involves a flexible helical hairpin; the other overlaps with the site involved in recognition of HHR23B, a protein involved in delivering proteolytic substrates to the proteasome. To gain a structural description of the system, we had to overcome the nontrivial problem of dealing with a weak ternary complex. This was done by designing josephin mutants, which retain only one binding site and by characterizing the complexes with complementary computational and experimental techniques. The presence of two ubiquitin-binding sites explains how ataxin-3 binds poly-ubiquitin chains and provides new insights into the molecular mechanism of ubiquitin recognition.


Assuntos
Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Ubiquitina/química , Ataxina-3 , Sítios de Ligação , Simulação por Computador , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ubiquitina/metabolismo
12.
FEBS J ; 275(10): 2548-60, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18410380

RESUMO

The leucine-rich repeat acidic nuclear protein (Anp32a/LANP) belongs to a family of evolutionarily-conserved phosphoproteins involved in a complex network of protein-protein interactions. In an effort to understand the cellular role, we have investigated the mode of interaction of Anp32a with its partners. As a prerequisite, we solved the structure in solution of the evolutionarily conserved N-terminal leucine-rich repeat (LRR) domain and modeled its interactions with other proteins, taking PP2A as a paradigmatic example. The interaction between the Anp32a LRR domain and the AXH domain of ataxin-1 was probed experimentally. The two isolated and unmodified domains bind with very weak (millimolar) affinity, thus suggesting the necessity either for an additional partner (e.g. other regions of either or both proteins or a third molecule) or for a post-translational modification. Finally, we identified by two-hybrid screening a new partner of the LRR domain, i.e. the microtubule plus-end tracking protein Clip 170/Restin, known to regulate the dynamic properties of microtubules and to be associated with severe human pathologies.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformação Proteica , Sequência de Aminoácidos , Animais , Ataxina-1 , Ataxinas , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/genética , Ligação Proteica , Proteína Fosfatase 2/química , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas de Ligação a RNA , Técnicas do Sistema de Duplo-Híbrido
13.
Hum Mol Genet ; 16(17): 2122-34, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17599952

RESUMO

Ataxin 1 (Atxn1) is a protein of unknown function associated with spinocerebellar ataxia type 1 (SCA1), a neurodegenerative disease of late onset with variable degrees of cerebellar ataxia, ophthalmoplegia and neuropathy. SCA1 is caused by the toxic effects triggered by an expanded polyglutamine (polyQ) within Atxn1 resulting in neurodegeneration in the cerebellum, brain stem and spinocerebellar tracts. To gain insights into Atxn1 function, we have analysed the cerebellar gene expression profiles by microarray analysis in Atxn1-null mice, and identified alterations in expression of genes regulated by Sp1-dependent transcription, including the dopamine receptor D2 (Drd2), retinoic acid/thyroid hormone and Wnt-signalling. Interestingly, Drd2 expression levels are reduced in both Atxn1-null and transgenic mice expressing a pathogenic human Atxn1 with an expanded polyglutamine in cerebellar Purkinje cells. Our co-transfection experiments in human neuroblastoma SH-SY5Y cells and luciferase assays provide evidence for transcriptional regulation of Drd2 by Atxn1 and its AXH module. We show that Atxn1 occupies at the Drd2 promoter in vivo, and interacts and functions synergistically with the zinc-finger transcription factor Sp1 to co-regulate Drd2 expression. The interaction and transcriptional effects are mediated by the AXH domain within Atxn1 and are abrogated by the expanded polyQ within Atxn1. Therefore, this study identifies novel molecular targets that are regulated by Atxn1 which might contribute to the motor deficits in SCA1, and provides new insights into the mechanisms by which Atxn1 co-regulates transcription.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/fisiologia , Receptores de Dopamina D2/genética , Animais , Ataxina-1 , Ataxinas , Cerebelo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Receptores de Dopamina D2/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica , Transfecção , Células Tumorais Cultivadas
14.
Exp Cell Res ; 312(9): 1463-74, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16488411

RESUMO

The tight skin (Tsk/+) mouse is a model for fibrotic disorders. The genetic defect in the Tsk/+ is an in-frame duplication between exons 17 and 40 of the fibrillin-1 gene which gives rise to a large transcript and protein. Mice homozygous for the mutation die in utero, whereas heterozygotes survive and spontaneously develop connective tissue disease. In this study, we generated hammerhead ribozymes directed against the mutant fibrillin-1 transcript. A partially mispairing ribozyme was the most effective vehicle to cleave the mutant transcript without undesired cleavage of wild type transcripts, as shown by cell-free RNA cleavage and cleavage in cell lines harboring the ribozyme, by RT-PCR, Northern and Western Blotting. Global gene expression profiling using oligonucleotide microarrays showed the expected reduction in fibrillin-1 mRNA, and down-regulation of several gene cohorts in ribozyme harboring TskR1 cells compared to Tsk/+ cells. Two of the functional clusters included genes regulating extracellular matrix such as connective tissue growth factor, serpine-1 (plasminogen activator inhibitor-1) and TIMP-1 and TIMP-3, and those involved in cytoskeletal organization and myofibroblast formation including calponins and transgelin. Ribozyme-mediated inhibition was confirmed by Western Blot and functional analysis using cell-reporter systems and remodeling of three dimensional collagen gels. Our results underline the therapeutic potential of hammerhead ribozymes in dominant negative defects and suggest that changes in microfibril architecture brought about by fibrillin-1 mutation lead to a complex disease phenotype.


Assuntos
Inativação Gênica , Proteínas dos Microfilamentos/genética , Mutação/genética , RNA Catalítico/metabolismo , Animais , Western Blotting , Células COS , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular/genética , Chlorocebus aethiops , Colágeno/metabolismo , Fator de Crescimento do Tecido Conjuntivo , Proteínas do Citoesqueleto/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fibrilina-1 , Fibrilinas , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Perfilação da Expressão Gênica , Proteínas Imediatamente Precoces/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Mutantes , Proteínas dos Microfilamentos/fisiologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , RNA Catalítico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1
15.
J Mol Biol ; 354(4): 883-93, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16277991

RESUMO

A family of neurodegenerative diseases is associated with anomalous expansion of a polyglutamine tract in the coding region of the corresponding proteins. The current working hypothesis is that polyglutamine diseases are caused by misfolding and aggregation of the proteins with a process dictated by the polyglutamine tracts, although increasing evidence suggests an involvement of the protein context in modulating these properties. Here, we show that the AXH domain of ataxin-1, the protein involved in spinocerebellar ataxia type-1, is the region responsible for the transcriptional repression activity of ataxin-1 and participates in protein aggregation. In vitro, the isolated domain undergoes a conformational transition towards a beta-enriched structure associated with aggregation and amyloid fibre formation spontaneously and without need for destabilizing conditions. Using a transfected cell line, we demonstrate that, while determined by polyglutamine expansion, ataxin-1 aggregation is noticeably reduced by deletion of AXH or by replacement with the homologous sequence from the transcription factor HBP1, which has no known tendency to aggregate. These results provide the first direct evidence of an involvement of a region other than the polyglutamine tract in polyglutamine pathologies.


Assuntos
Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Amiloide , Animais , Ataxinas , Células COS , Chlorocebus aethiops , Dimerização , Regulação da Expressão Gênica , Doenças Neurodegenerativas/etiologia , Peptídeos/metabolismo , Peptídeos/fisiologia , Estrutura Terciária de Proteína , Proteínas Repressoras , Temperatura , Transfecção
16.
Proc Natl Acad Sci U S A ; 102(30): 10493-8, 2005 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-16020535

RESUMO

The Josephin domain plays an important role in the cellular functions of ataxin-3, the protein responsible for the neurodegenerative Machado-Joseph disease. We have determined the solution structure of Josephin and shown that it belongs to the family of papain-like cysteine proteases, sharing the highest degree of structural similarity with bacterial staphopain. A currently unique structural feature of Josephin is a flexible helical hairpin formed by a 32-residue insertion, which could determine substrate specificity. By using the Josephin structure and the availability of NMR chemical shift assignments, we have mapped the enzyme active site by using the typical cysteine protease inhibitors, transepoxysuccinyl-L-eucylamido-4-guanidino-butane (E-64) and [L-3-trans-(propylcarbamyl)oxirane-2-carbonyl]-L-isoleucyl-L-proline (CA-074). We also demonstrate that the specific interaction of Josephin with the ubiquitin-like domain of the ubiquitin- and proteasome-binding factor HHR23B involves complementary exposed hydrophobic surfaces. The structural similarity with other deubiquitinating enzymes suggests a model for the proteolytic enzymatic activity of ataxin-3.


Assuntos
Doença de Machado-Joseph/enzimologia , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Ataxina-3 , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA , Dipeptídeos , Escherichia coli , Leucina/análogos & derivados , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares , Estrutura Terciária de Proteína , Proteínas Repressoras , Especificidade por Substrato
17.
Structure ; 13(5): 743-53, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15893665

RESUMO

AXH is a protein module identified in two unrelated families that comprise the transcriptional repressor HBP1 and ataxin-1 (ATX1), the protein responsible for spinocerebellar ataxia type-1 (SCA1). SCA1 is a neurodegenerative disorder associated with protein misfolding and formation of toxic intranuclear aggregates. We have solved the structure in solution of monomeric AXH from HBP1. The domain adopts a nonclassical permutation of an OB fold and binds nucleic acids, a function previously unidentified for this region of HBP1. Comparison of HBP1 AXH with the crystal structure of dimeric ATX1 AXH indicates that, despite the significant sequence homology, the two proteins have different topologies, suggesting that AXH has chameleon properties. We further demonstrate that HBP1 AXH remains monomeric, whereas the ATX1 dimer spontaneously aggregates and forms fibers. Our results describe an entirely novel, to our knowledge, example of a chameleon fold and suggest a link between these properties and the SCA1 pathogenesis.


Assuntos
Proteínas de Grupo de Alta Mobilidade/química , Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Proteínas de Ligação a RNA/química , Proteínas Repressoras/química , Sequência de Aminoácidos , Animais , Ataxina-1 , Ataxinas , Sítios de Ligação , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Soluções , Ataxias Espinocerebelares/metabolismo
18.
J Mol Biol ; 344(4): 1021-35, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15544810

RESUMO

Expansion of the polyglutamine (polyQ) region in the protein ataxin-3 is associated with spinocerebellar ataxia type 3, an inherited neurodegenerative disorder that belongs to the family of polyQ diseases. Increasing evidence indicates that protein aggregation and fibre formation play an important role in these pathologies. In a previous study, we determined the domain architecture of ataxin-3, suggesting that it comprises a globular domain, named Josephin, and a more flexible C-terminal region, that includes the polyQ tract. Here, we have characterised for the first time the biophysical properties of the isolated Josephin motif, showing that it is an autonomously folded unit and that it has no significant interactions with the C-terminal region. Study of its thermodynamic stability indicates that Josephin has an intrinsic tendency to aggregate and forms temperature-induced fibrils similar to those described for expanded ataxin-3. We show that, under destabilising conditions, the behaviours of the isolated Josephin domain and ataxin-3 are extremely similar. Our data therefore strongly suggest that the stability and aggregation properties of non-expanded ataxin-3 are determined by those of the Josephin domain, which is sufficient to reproduce the behaviour of the full-length protein. Our data support a mechanism in which the thermodynamic stability of ataxin-3 is governed by the properties of the Josephin domain, but the presence of an expanded polyQ tract increases dramatically the protein's tendency to aggregate.


Assuntos
Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ataxina-3 , Humanos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/ultraestrutura , Proteínas Nucleares , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/ultraestrutura , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras , Termodinâmica
19.
J Mol Biol ; 343(1): 43-53, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-15381419

RESUMO

Absence of the fragile X mental retardation protein (FMRP) causes fragile X syndrome, the most common form of hereditary mental retardation. FMRP is a mainly cytoplasmic protein thought to be involved in repression of translation, through a complex network of protein-protein and protein-RNA interactions. Most of the currently known protein partners of FMRP recognise the conserved N terminus of the protein. No interaction has yet been mapped to the highly charged, poorly conserved C terminus, so far thought to be involved in RNA recognition through an RGG motif. In the present study, we show that a two-hybrid bait containing residues 419-632 of human FMRP fishes out a protein that spans the sequence of the Ran-binding protein in the microtubule-organising centre (RanBPM/RanBP9). Specific interaction of RanBPM with FMRP was confirmed by in vivo and in vitro assays. In brain tissue sections, RanBPM is highly expressed in the neurons of cerebral cortex and the cerebellar purkinje cells, in a pattern similar to that described for FMRP. Sequence analysis shows that RanBPM is a multi-domain protein. The interaction with FMRP was mapped in a newly identified CRA motif present in the RanBPM C terminus. Our results suggest that the functional role of RanBPM binding is modulation of the RNA-binding properties of FMRP.


Assuntos
Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células COS , Cerebelo/citologia , Córtex Cerebral/citologia , Chlorocebus aethiops , Sequência Conservada , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Humanos , Deficiência Intelectual , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Neurônios/metabolismo , Estrutura Secundária de Proteína , Células de Purkinje/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...