Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 14(12): 2339-2345, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29493703

RESUMO

Perfluoropolyether tetraol (PFPE tetraol) possesses a hydrophobic perfluoropolyether chain in the backbone and two hydroxyl groups at each chain terminal, which facilitates the formation of hydrogen bonds with water molecules resulting in the formation an extended physical network. About 3 wt% water was required for the formation of the microphase separated physical network of PFPE tetraol. The mechanism responsible for the microphase separation of water clusters in the physical network was studied using a combination of techniques such as NMR spectroscopy, molecular dynamics (MD) simulations and DSC. MD simulation studies provided evidence for the formation of clusters in the PFPE tetraol physical network and the size of these clusters increased gradually with an increase in the extent of hydration. Both MD simulations and NMR spectroscopy studies revealed that these clusters position themselves away from the hydrophobic backbone or vice versa. The presence of intra- and inter-chain aggregation possibility among hydrophilic groups was evident. DSC results demonstrated the presence of tightly and loosely bound water molecules to the terminal hydroxyl groups of PFPE tetraol through hydrogen bonding. The data from all the three techniques established the formation of a physical network driven by hydrogen bonding between the hydrophilic end groups of PFPE tetraol and water molecules. The flexible nature of the PFPE tetraol backbone and its low solubility parameter favour clustering of water molecules at the terminal groups and result in the formation of a gel.

2.
Macromol Rapid Commun ; 32(8): 637-43, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21480420

RESUMO

A highly soluble poly(1,3,4-oxadiazole) (POD) substituted with long alkyl chains was examined for electrochemical fluorescence switching. The high solubility of the polymers enabled a simple fabrication of an electrochemical cell, which showed reversible fluorescence switching between dark (n-doping) and bright (neutral) states with a maximum on/off ratio of 2.5 and a cyclability longer than 1000 cycles. Photochemical cleavage of the oxadiazole in POD allowed photo-patterning of the POD film upon exposure to UV source. The patterned POD films displayed patterned image reversibly under a step potential of +1.8/-1.8 V.


Assuntos
Eletroquímica/instrumentação , Oxidiazóis/química , Polímeros/química , Eletroquímica/métodos , Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...