Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Cycle ; 18(5): 531-551, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30773093

RESUMO

Human Dual-specificity tyrosine (Y) Regulated Kinase 1A (DYRK1A) is encoded by a dosage dependent gene whereby either trisomy or haploinsufficiency result in developmental abnormalities. However, the function and regulation of this important protein kinase are not fully understood. Here, we report proteomic analysis of DYRK1A in human cells that revealed a novel role of DYRK1A in DNA double-strand breaks (DSBs) repair, mediated in part by its interaction with the ubiquitin-binding protein RNF169 that accumulates at the DSB sites and promotes homologous recombination repair (HRR) by displacing 53BP1, a key mediator of non-homologous end joining (NHEJ). We found that overexpression of active, but not the kinase inactive DYRK1A in U-2 OS cells inhibits accumulation of 53BP1 at the DSB sites in the RNF169-dependent manner. DYRK1A phosphorylates RNF169 at two sites that influence its ability to displace 53BP1 from the DSBs. Although DYRK1A is not required for the recruitment of RNF169 to the DSB sites and 53BP1 displacement, inhibition of DYRK1A or mutation of the DYRK1A phosphorylation sites in RNF169 decreases its ability to block accumulation of 53BP1 at the DSB sites. Interestingly, CRISPR-Cas9 knockout of DYRK1A in human and mouse cells also diminished the 53BP1 DSB recruitment in a manner that did not require RNF169, suggesting that dosage of DYRK1A can influence the DNA repair processes through both RNF169-dependent and independent mechanisms. Human U-2 OS cells devoid of DYRK1A display an increased HRR efficiency and resistance to DNA damage, therefore our findings implicate DYRK1A in the DNA repair processes.


Assuntos
Dano ao DNA , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Dano ao DNA/efeitos da radiação , Reparo do DNA , Raios gama , Edição de Genes , Humanos , Redes e Vias Metabólicas , Camundongos , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Quinases Dyrk
2.
Mol Pharm ; 12(1): 287-97, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25407898

RESUMO

TriplatinNC is a highly positively charged, substitution-inert derivative of the phase II clinical anticancer drug, BBR3464. Such substitution-inert complexes form a distinct subset of polynuclear platinum complexes (PPCs) interacting with DNA and other biomolecules through noncovalent interactions. Rapid cellular entry is facilitated via interaction with cell surface glycosoaminoglycans and is a mechanism unique to PPCs. Nanoscale secondary ion mass spectrometry (nanoSIMS) showed rapid distribution within cytoplasmic and nucleolar compartments, but not the nucleus. In this article, the downstream effects of nucleolar localization are described. In human colon carcinoma cells, HCT116, the production rate of 47S rRNA precursor transcripts was dramatically reduced as an early event after drug treatment. Transcriptional inhibition of rRNA was followed by a robust G1 arrest, and activation of apoptotic proteins caspase-8, -9, and -3 and PARP-1 in a p53-independent manner. Using cell synchronization and flow cytometry, it was determined that cells treated while in G1 arrest immediately, but cells treated in S or G2 successfully complete mitosis. Twenty-four hours after treatment, the majority of cells finally arrest in G1, but nearly one-third contained highly compacted DNA; a distinct biological feature that cannot be associated with mitosis, senescence, or apoptosis. This unique effect mirrored the efficient condensation of tRNA and DNA in cell-free systems. The combination of DNA compaction and apoptosis by TriplatinNC treatment conferred striking activity in platinum-resistant and/or p53 mutant or null cell lines. Taken together, our results support that the biological activity of TriplatinNC reflects reduced metabolic deactivation (substitution-inert compound not reactive to sulfur nucleophiles), high cellular accumulation, and novel consequences of high-affinity noncovalent DNA binding, producing a new profile and a further shift in the structure-activity paradigms for antitumor complexes.


Assuntos
Antineoplásicos/química , Nucléolo Celular/efeitos dos fármacos , DNA/química , Compostos Organoplatínicos/química , Platina/uso terapêutico , RNA Ribossômico/química , Proteína Supressora de Tumor p53/genética , Animais , Apoptose , Caspases/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Sistema Livre de Células , Citometria de Fluxo , Células HCT116 , Humanos , Concentração Inibidora 50 , Camundongos , Microscopia Confocal , Mitose , Mutação , Peptídeos/química , Fosfatos/química , RNA de Transferência/química , Proteína Supressora de Tumor p53/metabolismo , beta-Galactosidase/metabolismo
3.
Biochem Pharmacol ; 86(12): 1708-20, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24161784

RESUMO

Despite similar structures and DNA binding profiles, two recently synthesized dinuclear platinum compounds are shown to elicit highly divergent effects on cell cycle progression. In colorectal HCT116 cells, BBR3610 shows a classical G2/M arrest with initial accumulation in S phase, but the derivative compound BBR3610-DACH, formed by introduction of the 1,2-diaminocyclohexane (DACH) as carrier ligand, results in severe G1/S as well as G2/M phase arrest, with nearly complete S phase depletion. The origin of this unique effect was studied. Cellular interstrand crosslinking as assayed by comet analysis was similar for both compounds, confirming previous in vitro results obtained on plasmid DNA. Immunoblotting revealed a stabilization of p53 and concomitant transient increases in p21 and p27 proteins after treatment with BBR3610-DACH. Cell viability assays and cytometric analysis of p53 and p21 null cells indicated that BBR3610-DACH-induced cell cycle arrest was p21-dependent and partially p53-dependent. However, an increase in the levels of cyclin E was observed with steady state levels of CDK2 and Cdc25A, suggesting that the G1 block occurs downstream of CDK/cyclin complex formation. The G2/M block was corroborated with decreased levels of cyclin A and cyclin B1. Surprisingly, BBR3610-DACH-induced G1 block was independent of ATM and ATR. Finally, both compounds induced apoptosis, with BBR3610-DACH showing a robust PARP-1 cleavage that was not associated with caspase-3/7 cleavage. In summary, BBR3610-DACH is a DNA binding platinum agent with unique inhibitory effects on cell cycle progression that could be further developed as a chemotherapeutic agent complementary to cisplatin and oxaliplatin.


Assuntos
Ciclo Celular/efeitos dos fármacos , Compostos de Platina/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaio Cometa , Células HCT116 , Humanos , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...