Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36497083

RESUMO

BACKGROUND: Combined non-viral gene therapy (GT) of ischemia and cardiovascular disease is a promising tool for potential clinical translation. In previous studies our group has developed combined gene therapy by vascular endothelial growth factor 165 (VEGF165) + hepatocyte growth factor (HGF). Our recent works have demonstrated that a bicistronic pDNA that carries both human HGF and VEGF165 coding sequences has a potential for clinical application in peripheral artery disease (PAD). The present study aimed to test HGF/VEGF combined plasmid efficacy in ischemic skeletal muscle comorbid with predominant complications of PAD-impaired glucose tolerance and type 2 diabetes mellitus (T2DM). METHODS: Male C57BL mice were housed on low-fat (LFD) or high-fat diet (HFD) for 10 weeks and metabolic parameters including FBG level, ITT, and GTT were evaluated. Hindlimb ischemia induction and plasmid administration were performed at 10 weeks with 3 weeks for post-surgical follow-up. Limb blood flow was assessed by laser Doppler scanning at 7, 14, and 21 days after ischemia induction. The necrotic area of m.tibialis anterior, macrophage infiltration, angio- and neuritogenesis were evaluated in tissue sections. The mitochondrial status of skeletal muscle (total mitochondria content, ETC proteins content) was assessed by Western blotting of muscle lysates. RESULTS: At 10 weeks, the HFD group demonstrated impaired glucose tolerance in comparison with the LFD group. HGF/VEGF plasmid injection aggravated glucose intolerance in HFD conditions. Blood flow recovery was not changed by HGF/VEGF plasmid injection either in LFD or HFD conditions. GT in LFD, but not in HFD conditions, enlarged the necrotic area and CD68+ cells infiltration. However, HGF/VEGF plasmid enhanced neuritogenesis and enlarged NF200+ area on muscle sections. In HFD conditions, HGF/VEGF plasmid injection significantly increased mitochondria content and ETC proteins content. CONCLUSIONS: The current study demonstrated a significant role of dietary conditions in pre-clinical testing of non-viral GT drugs. HGF/VEGF combined plasmid demonstrated a novel aspect of potential participation in ischemic skeletal muscle regeneration, through regulation of innervation and bioenergetics of muscle. The obtained results made HGF/VEGF combined plasmid a very promising tool for PAD therapy in impaired glucose tolerance conditions.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Camundongos , Masculino , Humanos , Animais , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Intolerância à Glucose/complicações , Intolerância à Glucose/genética , Intolerância à Glucose/terapia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/terapia , Camundongos Endogâmicos C57BL , Isquemia/metabolismo , Terapia Genética/métodos , Músculo Esquelético/metabolismo
2.
Biol Open ; 10(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34494647

RESUMO

Ex vivo, gene therapy is a powerful approach holding great promises for the treatment of both genetic and acquired diseases. Adeno-associated virus (AAV) vectors are a safe and efficient delivery system for modification of mesenchymal stem cells (MSC) that could maximize their therapeutic benefits. Assessment of MSC viability and functional activity after infection with new AAV serotypes is necessary, due to AAV tropism to specific cell types. We infected human and rat adipose-tissue MSC with hybrid AAV-DJ serotype vectors carrying GFP and SCF genes. GFP expression from AAV-DJ was about 1.5-fold superior to that observed with AAV-2 and lasted for at least 21 days as was evaluated by flow cytometry and fluorescence microscopy. AAV-DJ proves to be suitable for the infection of rat and human MSC with a similar efficiency. Infected MSC were still viable but showed a 25-30% growth-rate slowdown. Moreover, we found an increase of SERPINB2 mRNA expression in human MSC while expression of other oxidative stress markers and extracellular matrix proteins was not affected. These results suggest that there is a differential cellular response in MSC infected with AAV viral vectors, which should be taken into account as it can affect the expected outcome for the therapeutic application.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/sangue , Células-Tronco Mesenquimais/virologia , Proteínas Virais/sangue , Animais , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ratos , Sorogrupo , Fator de Células-Tronco/metabolismo , Tropismo Viral/genética
3.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339427

RESUMO

Cell therapy of the post-infarcted myocardium is still far from clinical use. Poor survival of transplanted cells, insufficient regeneration, and replacement of the damaged tissue limit the potential of currently available cell-based techniques. In this study, we generated a multilayered construct from adipose-derived mesenchymal stromal cells (MSCs) modified to secrete stem cell factor, SCF. In a rat model of myocardium infarction, we show that transplantation of SCF producing cell sheet induced activation of the epicardium and promoted the accumulation of c-kit positive cells in ischemic muscle. Morphometry showed the reduction of infarct size (16%) and a left ventricle expansion index (0.12) in the treatment group compared to controls (24-28%; 0.17-0.32). The ratio of viable myocardium was more than 1.5-fold higher, reaching 49% compared to the control (28%) or unmodified cell sheet group (30%). Finally, by day 30 after myocardium infarction, SCF-producing cell sheet transplantation increased left ventricle ejection fraction from 37% in the control sham-operated group to 53%. Our results suggest that, combining the genetic modification of MSCs and their assembly into a multilayered construct, we can provide prolonged pleiotropic effects to the damaged heart, induce endogenous regenerative processes, and improve cardiac function.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/terapia , Pericárdio/metabolismo , Fator de Células-Tronco/metabolismo , Tecido Adiposo/citologia , Animais , Células Cultivadas , Células HEK293 , Humanos , Masculino , Pericárdio/fisiologia , Ratos , Ratos Wistar , Regeneração , Fator de Células-Tronco/genética
4.
PLoS One ; 13(5): e0197566, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29787588

RESUMO

Since development of plasmid gene therapy for therapeutic angiogenesis by J. Isner this approach was an attractive option for ischemic diseases affecting large cohorts of patients. However, first placebo-controlled clinical trials showed its limited efficacy questioning further advance to practice. Thus, combined methods using delivery of several angiogenic factors got into spotlight as a way to improve outcomes. This study provides experimental proof of concept for a combined approach using simultaneous delivery of VEGF165 and HGF genes to alleviate consequences of myocardial infarction (MI). However, recent studies suggested that angiogenic growth factors have pleiotropic effects that may contribute to outcome so we expanded focus of our work to investigate potential mechanisms underlying action of VEGF165, HGF and their combination in MI. Briefly, Wistar rats underwent coronary artery ligation followed by injection of plasmid bearing VEGF165 or HGF or mixture of these. Histological assessment showed decreased size of post-MI fibrosis in both-VEGF165- or HGF-treated animals yet most prominent reduction of collagen deposition was observed in VEGF165+HGF group. Combined delivery group rats were the only to show significant increase of left ventricle (LV) wall thickness. We also found dilatation index improved in HGF or VEGF165+HGF treated animals. These effects were partially supported by our findings of c-kit+ cardiac stem cell number increase in all treated animals compared to negative control. Sporadic Ki-67+ mature cardiomyocytes were found in peri-infarct area throughout study groups with comparable effects of VEGF165, HGF and their combination. Assessment of vascular density in peri-infarct area showed efficacy of both-VEGF165 and HGF while combination of growth factors showed maximum increase of CD31+ capillary density. To our surprise arteriogenic response was limited in HGF-treated animals while VEGF165 showed potent positive influence on a-SMA+ blood vessel density. The latter hinted to evaluate infiltration of monocytes as they are known to modulate arteriogenic response in myocardium. We found that monocyte infiltration was driven by VEGF165 and reduced by HGF resulting in alleviation of VEGF-stimulated monocyte taxis after combined delivery of these 2 factors. Changes of monocyte infiltration were concordant with a-SMA+ arteriole density so we tested influence of VEGF165 or HGF on endothelial cells (EC) that mediate angiogenesis and inflammatory response. In a series of in vitro experiments we found that VEGF165 and HGF regulate production of inflammatory chemokines by human EC. In particular MCP-1 levels changed after treatment by recombinant VEGF, HGF or their combination and were concordant with NF-κB activation and monocyte infiltration in corresponding groups in vivo. We also found that both-VEGF165 and HGF upregulated IL-8 production by EC while their combination showed additive type of response reaching peak values. These changes were HIF-2 dependent and siRNA-mediated knockdown of HIF-2α abolished effects of VEGF165 and HGF on IL-8 production. To conclude, our study supports combined gene therapy by VEGF165 and HGF to treat MI and highlights neglected role of pleiotropic effects of angiogenic growth factors that may define efficacy via regulation of inflammatory response and endothelial function.


Assuntos
Terapia Genética/métodos , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/uso terapêutico , Infarto do Miocárdio/terapia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células , Quimiocina CCL2/biossíntese , Modelos Animais de Doenças , Expressão Gênica , Fator de Crescimento de Hepatócito/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-8/biossíntese , Masculino , Monócitos/metabolismo , Monócitos/patologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , NF-kappa B/metabolismo , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Plasmídeos/administração & dosagem , Plasmídeos/genética , Ratos , Ratos Wistar , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Tissue Cell ; 49(1): 64-71, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28041835

RESUMO

Cell sheets (CS) from c-kit+ cardiac stem cell (CSC) hold a potential for application in regenerative medicine. However, manufacture of CS may require thermoresponsive dishes, which increases cost and puts one in dependence on specific materials. Alternative approaches were established recently and we conducted a short study to compare approaches for detachment of CS from c-kit+ CSC. Our in-house developed method using chelation by Versene solution was compared to UpCell™ thermoresponsive plates in terms of CSC proliferation, viability, gap junction formation and engraftment in a model of myocardial infarction. Use of Versene solution instead of thermoresponsive dishes resulted in comparable CS thickness (approximately 100mcm), cell proliferation rate and no signs of apoptosis detected in both types of constructs. However, we observed a minor reduction of gap junction count in Versene-treated CS. At day 30 after delivery to infarcted myocardium both types of CS retained at the site of transplantation and contained comparable amounts of proliferating cells indicating engraftment. Thus, we may conclude that detachment of CS from c-kit+ CSC using Versene solution followed by mechanical treatment is an alternative to thermoresponsive plates allowing use of routinely available materials to generate constructs for cardiac repair.


Assuntos
Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Infarto do Miocárdio/terapia , Transplante de Células-Tronco , Animais , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácido Edético/farmacologia , Junções Comunicantes/efeitos dos fármacos , Humanos , Infarto do Miocárdio/patologia , Miocárdio/patologia , Ratos , Medicina Regenerativa , Células-Tronco/efeitos dos fármacos
6.
J Cell Biochem ; 117(1): 180-96, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26096299

RESUMO

Tissue regeneration requires coordinated "teamwork" of growth factors, proteases, progenitor and immune cells producing inflammatory cytokines. Mesenchymal stem cells (MSC) might play a pivotal role by substituting cells or by secretion of growth factors or cytokines, and attraction of progenitor and inflammatory cells, which participate in initial stages of tissue repair. Due to obvious impact of inflammation on regeneration it seems promising to explore whether inflammatory factors could influence proangiogenic abilities of MSC. In this study we investigated effects of TNF-α on activity of adipose-derived stem cells (ADSC). We found that treatment with TNF-α enhances ADSC proliferation, F-actin microfilament assembly, increases cell motility and migration through extracellular matrix. Exposure of ADSC to TNF-α led to increased mRNA expression of proangiogenic factors (FGF-2, VEGF, IL-8, and MCP-1), inflammatory cytokines (IL-1ß, IL-6), proteases (MMPs, uPA) and adhesion molecule ICAM-1. At the protein level, VEGF, IL-8, MCP-1, and ICAM-1 production was also up-regulated. Pre-incubation of ADSC with TNF-α-enhanced adhesion of monocytes to ADSC but suppressed adherence of ADSC to endothelial cells (HUVEC). Stimulation with TNF-α triggers ROS generation and activates a number of key intracellular signaling mediators known to positively regulate angiogenesis (Akt, small GTPase Rac1, ERK1/2, and p38 MAP-kinases). Pre-treatment with TNF-α-enhanced ADSC ability to promote growth of microvessels in a fibrin gel assay and accelerate blood flow recovery, which was accompanied by increased arteriole density and reduction of necrosis in mouse hind limb ischemia model. These findings indicate that TNF-α plays a role in activation of ADSC angiogenic and regenerative potential.


Assuntos
Tecido Adiposo/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Actinas/metabolismo , Tecido Adiposo/metabolismo , Adulto , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citometria de Fluxo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco/efeitos dos fármacos , Adulto Jovem
7.
Biochem Biophys Res Commun ; 397(2): 277-82, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20580686

RESUMO

Urokinase receptor (uPAR) associates in cis with complement receptor 3 (CR3). In the present study, we addressed whether this coupling regulates CR3-mediated phagocytosis. CR3-mediated attachment of iC3b-opsonized sheep red blood cells to human neutrophils and internalization of these cells were reduced by removal of cell-bound uPAR by phosphatidylinositol-specific phospholipase C and reconstituted in the presence of soluble uPAR. The attachment and internalization were suppressed in the presence of anti-uPAR polyclonal antibody, proteolytically inactive urokinase and saccharides that disrupt interaction of uPAR with CR3. Thus, uPAR acts as a cofactor for iC3b binding to CR3 and regulates CR3-mediated phagocytosis.


Assuntos
Complemento C3b/metabolismo , Antígeno de Macrófago 1/metabolismo , Neutrófilos/imunologia , Fagocitose , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Membrana Celular/metabolismo , Humanos
8.
Inflammation ; 33(1): 1-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19756998

RESUMO

Soluble form of the urokinase-type plasminogen activator receptor (suPAR) is markedly increased in biological fluids during different inflammatory conditions. It has previously been observed that the highest suPAR concentrations in inflammatory exudates tend to be associated with the presence of high number of neutrophils. Guided by this observation and our recent finding that activated neutrophils release suPAR we investigated whether neutrophils can be a source of suPAR during the inflammatory response in vivo. To address this question we conducted the comparative analysis of neutrophils isolated from the paired samples of synovial fluid (SF) and peripheral blood (PB) of rheumatoid arthritis patients. Freshly isolated SF neutrophils released significantly (p < 0.01) higher amounts of suPAR compared with PB neutrophils. We demonstrated that neutrophils from both sources release predominantly the truncated D2D3 form of suPAR. Migration of formyl peptide receptor-like 1 (FPRL1)-transfected human embryonic kidney (HEK) 293 cells toward the supernatants harvested from in vitro cultured SF neutrophils was significantly diminished when D2D3 form of suPAR was immunodepleted from the supernatants. Taken together, these data demonstrate that neutrophils, first, contribute to or are responsible for the generation of the increased suPAR levels during the inflammatory response and, second, release the chemotactically active form of suPAR that might be involved in the recruitment of formyl peptide receptors-expressing leukocytes into the inflamed tissues.


Assuntos
Artrite Reumatoide/metabolismo , Mediadores da Inflamação/metabolismo , Ativação de Neutrófilo , Neutrófilos/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Líquido Sinovial/metabolismo , Artrite Reumatoide/imunologia , Linhagem Celular , Quimiotaxia , Meios de Cultivo Condicionados/metabolismo , Humanos , Neutrófilos/imunologia , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/genética , Receptores de Lipoxinas/metabolismo , Líquido Sinovial/imunologia , Transfecção , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...