Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 14(10): 3550-3557, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28874050

RESUMO

Protein drugs play an important role in modern day medicine. Typically, these proteins are formulated as liquids requiring cold chain processing. To circumvent the cold chain and achieve better storage stability, these proteins can be dried in the presence of carbohydrates. We demonstrate that thermal gradient mid- and far-infrared spectroscopy (FTIR and THz-TDS, respectively) can provide useful information about solid-state protein carbohydrate formulations regarding mobility and intermolecular interactions. A model protein (BSA) was lyophilized in the presence of three carbohydrates with different size and protein stabilizing capacity. A gradual increase in mobility was observed with increasing temperature in formulations containing protein and/or larger carbohydrates (oligo- or polysaccharides), lacking a clear onset of fast mobility as was observed for smaller molecules. Furthermore, both techniques are able to identify the glass transition temperatures (Tg) of the samples. FTIR provides additional information as it can independently monitor changes in protein and carbohydrate bands at the Tg. Lastly, THz-TDS confirms previous findings that protein-carbohydrate interactions decrease with increasing molecular weight of the carbohydrate, which results in decreased protein stabilization.


Assuntos
Carboidratos/química , Proteínas/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectroscopia Terahertz/métodos , Biofarmácia , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Liofilização/métodos , Ligação de Hidrogênio , Peso Molecular , Preparações Farmacêuticas/química , Estabilidade Proteica , Temperatura
2.
Mol Pharm ; 12(3): 684-94, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25581526

RESUMO

Protein-based biopharmaceuticals are generally produced as aqueous solutions and stored refrigerated to obtain sufficient shelf life. Alternatively, proteins may be freeze-dried in the presence of sugars to allow storage stability at ambient conditions for prolonged periods. However, to act as a stabilizer, these sugars should remain in the glassy state during storage. This requires a sufficiently high glass transition temperature (Tg). Furthermore, the sugars should be able to replace the hydrogen bonds between the protein and water during drying. Frequently used disaccharides are characterized by a relatively low Tg, rendering them sensitive to plasticizing effects of residual water, which strongly reduces the Tg values of the formulation. Larger sugars generally have higher Tgs, but it is assumed that these sugars are limited in their ability to interact with the protein due to steric hindrance. In this paper, the size and molecular flexibility of sugars was related to their ability to stabilize proteins. Four diverse proteins varying in size from 6 kDa to 540 kDa were freeze-dried in the presence of different sugars varying in size and molecular flexibility. Subsequently, the different samples were subjected to an accelerated stability test. Using protein specific assays and intrinsic fluorescence, stability of the proteins was monitored. It was found that the smallest sugar (disaccharide trehalose) best preserved the proteins, but also that the Tg of the formulations was only just high enough to maintain sufficient vitrification. When trehalose-based formulations are exposed to high relative humidities, water uptake by the product reduces the Tgs too much. In that respect, sugars with higher Tgs are desired. Addition of polysaccharide dextran 70 kDa to trehalose greatly increased the Tg of the formulation. Moreover, this combination also improved the stability of the proteins compared to dextran only formulations. The molecularly flexible oligosaccharide inulin 4 kDa provided better stabilization than the similarly sized but molecularly rigid oligosaccharide dextran 6 kDa. In conclusion, the results of this study indicate that size and molecular flexibility of sugars affect their ability to stabilize proteins. As long as they maintain vitrified, smaller and molecularly more flexible sugars are less affected by steric hindrance and thus better capable at stabilizing proteins.


Assuntos
Carboidratos/química , Estabilidade de Medicamentos , Estabilidade Proteica , Proteínas/química , Biofarmácia , Química Farmacêutica , Armazenamento de Medicamentos , Liofilização , Humanos , Estrutura Molecular , Peso Molecular , Espectrometria de Fluorescência , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...