Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(3): 1227-1238, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38364268

RESUMO

Cobalt-doped ZnO (CZO) thin films were deposited on glass substrates at room temperature by radio frequency (RF) magnetron sputtering of a single target prepared with ZnO and Co3O4 powders. Changes in the crystallinity, morphology, optical properties, and chemical composition of the CZO thin films were investigated at various sputtering powers of 45, 60, and 75 W. All samples presented a hexagonal wurtzite-type structure with a preferential c-axis at the (002) plane, along with a distinct change in the strain values through X-ray diffraction patterns. Scanning electron and atomic force microscopy revealed uniform and dense deposition of nanorod CZO samples with a high surface roughness (RMS). The Hall mobility and carrier concentration increased with the introduction of Co+ ions into the ZnO matrix, as seen from the Hall effect study. The gradual increase of the power applied on the target source significantly affected the morphology of the CZO thin film, which is reflected in the CO2-sensing performance. The best gas response to CO2 was recorded for CZO-60 W with a response of 1.45 for 500 ppm CO2, and the response/recovery times were 72 and 35 s, respectively. The distinguishing feature of the CZO sensor is its ability to effectively and rapidly detect the CO2 target gas at room temperature (∼27 °C, RT).


Assuntos
Nanotubos , Óxido de Zinco , Dióxido de Carbono , Temperatura , Cobalto
2.
Nanoscale Adv ; 6(2): 578-589, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38235078

RESUMO

Lithium-sulfur (Li-S) batteries are attracting tremendous attention owing to their critical advantages, such as high theoretical capacity of sulfur, cost-effectiveness, and environment-friendliness. Nevertheless, the vast commercialisation of Li-S batteries is severely hindered by sharp capacity decay upon operation and shortened cycle life because of the insulating nature of sulfur along with the solubility of intermediate redox products, lithium polysulfides (LiPSs), in electrolytes. This work proposes the use of multifunctional Ni/NiO-embedded carbon nanofibers (Ni/NiO@CNFs) synthesized by an electrospinning technique with the corresponding heat treatment as promising free-standing current collectors to enhance the kinetics of LiPS redox reactions and to provide prolonged cyclability by utilizing more efficient active materials. The electrochemical performance of the Li-S batteries with Ni/NiO@CNFs with ∼2.0 mg cm-2 sulfur loading at 0.5 and 1.0C current densities delivered initial specific capacities of 1335.1 mA h g-1 and 1190.4 mA h g-1, retrieving high-capacity retention of 77% and 70% after 100 and 200 cycles, respectively. The outcomes of this work disclose the beneficial auxiliary effect of metal and metal oxide nanoparticle embedment onto carbon nanofiber mats as being attractively suited up to achieve high-performance Li-S batteries.

3.
R Soc Open Sci ; 10(11): 230843, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38026010

RESUMO

Chitosan (CS)-based anion exchange membranes (AEMs) have gained significant attention in fuel cell applications owing to their numerous benefits, such as environmental friendliness, flexibility for structural alteration, and improved mechanical, thermal and chemical durability. This study aims to enhance the cell performance of CS-based AEMs by addressing key factors including mechanical stability, ionic conductivity, water absorption and expansion rate. While previous reviews have predominantly focused on CS as a proton-conducting membrane, the present mini-review highlights the advancements of CS-based AEMs. Furthermore, the study investigates the stability of cationic head groups grafted to CS through simulations. Understanding the chemical properties of CS, including the behaviour of grafted head groups, provides valuable insights into the membrane's overall stability and performance. Additionally, the study mentions the potential of modern cellulose membranes for alkaline environments as promising biopolymers. While the primary focus is on CS-based AEMs, the inclusion of cellulose membranes underscores the broader exploration of biopolymer materials for fuel cell applications.

4.
Small ; 19(44): e2302973, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37377256

RESUMO

Rechargeable zinc aqueous batteries are key alternatives for replacing toxic, flammable, and expensive lithium-ion batteries in grid energy storage systems. However, these systems possess critical weaknesses, including the short electrochemical stability window of water and intrinsic fast zinc dendrite growth. Hydrogel electrolytes provide a possible solution, especially cross-linked zwitterionic polymers that possess strong water retention ability and high ionic conductivity. Herein, an in situ prepared fiberglass-incorporated dual-ion zwitterionic hydrogel electrolyte with an ionic conductivity of 24.32 mS cm-1 , electrochemical stability window up to 2.56 V, and high thermal stability is presented. By incorporating this hydrogel electrolyte of zinc and lithium triflate salts, a zinc//LiMn0.6 Fe0.4 PO4 pouch cell delivers a reversible capacity of 130 mAh g-1 in the range of 1.0-2.2 V at 0.1C, and the test at 2C provides an initial capacity of 82.4 mAh g-1 with 71.8% capacity retention after 1000 cycles with a coulombic efficiency of 97%. Additionally, the pouch cell is fire resistant and remains safe after cutting and piercing.

5.
ACS Omega ; 8(8): 8045-8051, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36872969

RESUMO

Lithium iron phosphate (LiFePO4, LFP) is one of the most advanced commercial cathode materials for Li-ion batteries and is widely applied as battery cells for electric vehicles. In this work, a thin and uniform LFP cathode film on a conductive carbon-coated aluminum foil was besieged by the electrophoretic deposition (EPD) technique. Along with the LFP deposition conditions, the impact of two types of binders, poly(vinylidene fluoride) (PVdF) and poly(vinylpyrrolidone) (PVP), on the film quality and electrochemical results has been studied. The results revealed that the LFP_PVP composite cathode had a highly stable electrochemical performance compared with the LFP_PVdF counterpart due to the negligible influence of the PVP on the pore volume and size and retaining high surface area of LFP. The LFP_PVP composite cathode film unveiled a high discharge capacity of 145 mAh g-1 at 0.1C and performed over 100 cycles with capacity retention and Coulombic efficiency of 95 and 99%, respectively. The C-rate capability test also revealed a more stable performance of LFP_PVP compared to LFP_PVdF.

6.
RSC Adv ; 13(14): 9428-9440, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36968061

RESUMO

Although lithium-sulfur batteries possess the highest theoretical capacity and lowest cost among all known rechargeable batteries, their commercialization is still hampered by the intrinsic disadvantages of low conductivity of sulfur and polysulfide shuttle effect, which is most critical. Considerable research efforts have been dedicated to solving these difficulties for every part of Li-S batteries. Separator modification with metal electrocatalysts is a promising approach to overcome the major part of these disadvantages. This work focuses on the development of Ni nanoparticles encapsulated in a few-layer nitrogen-doped graphene supported by nitrogen-doped graphitic carbon (Ni@NGC) with different metal loadings as separator modifications. The effect of metal loading on the Li-S electrochemical reaction kinetics and performance of Li-S batteries was investigated. Controlling the Ni loading allowed for the modulation of the surface area-to-metal content ratio, which influenced the reaction kinetics and cycling performance of Li-S cells. Among the separators with different Ni loadings, the one with 9 wt% Ni exhibited the most efficient acceleration of the polysulfide redox reaction and minimized the polysulfide shuttling effect. Batteries with this separator retained 77.2% capacity after 200 cycles at 0.5C, with a high sulfur loading of ∼4.0 mg cm-2, while a bare separator showed 51.3% capacity retention after 200 cycles under the same conditions. This work reveals that there is a vast utility space for carbon-encapsulated Ni nanoparticles in electrochemical energy storage devices with optimal selection and rational design.

7.
ACS Omega ; 7(49): 45371-45380, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530230

RESUMO

A two-phase anion-exchange membrane was prepared from quaternized chitosan (QCS) integrated with an electrospun polyacrylonitrile (PAN) scaffold by spin coating. To synthesize QCS, glycidyltrimethylammonium chloride in various amounts was introduced into the structure of CS. The characterization of the cast cross-linked QCS (CQCS) membranes by impedance spectroscopy revealed the ionic conductivity (IC) in the range of 2.8 × 10-4 to 8.2 × 10-4 S cm-1 and the degree of quaternization (DQ) of 26.4-51.0%, where the CQCS film with the DQ of 51.0% showed excellent performance. When CQCS was reinforced with a PAN fiber mat, the newly developed composite membrane demonstrated the highest IC of 34 × 10-4 S cm-1 at 80 °C, low swelling, and an almost eightfold increase in tensile strength at a fully hydrated state compared to pristine materials. Moreover, the CQCS/PAN membrane was chemically stable and revealed increasing hydroxide transport during 1 month immersion in alkaline media.

8.
Nanoscale Adv ; 4(21): 4606-4616, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36341286

RESUMO

Advanced all-solid-state batteries are considered as the most preferable power source for the next generation devices. Such batteries demand consumption of electrode materials with high energy and power density. One of the excellent solutions is the utilization of Li metal as anode which provides opportunity to fulfill such requirements. Yet, obstacles such as interfacial impedance and reactivity of Li metal with promising solid electrolytes prevent the consumption of the Li anode. Despite its outstanding stability under ambient conditions, high ionic conductivity and facile synthesis methods, NASICON-type Li1.3Al0.3Ti1.7(PO4)3 also suffers from the above mentioned problems. In this work, these critical issues were resolved by applying an artificial protective interlayer. Herein, the layer-by-layer polymer assembly approach of the ultra-thin interlayer of (PAA/PEO)30 on either side of solid electrolyte pellets simultaneously is presented. The introduction of the protective layer prevented a formation of mixed conduction interphase and effectively decreased the interfacial impedance. A symmetric cell with Li metal electrodes performed over 600 hours at 0.1 mA cm-2. Furthermore, an all-solid-state Li metal battery, assembled with the modified LATP solid electrolyte and LiFePO4 cathode, demonstrated an excellent electrochemical performance with an initial discharge capacity of 115 mA h g-1 and a capacity retention of 93% over 20 cycles with a coloumbic efficiency of almost 100%. The LATP with the (PAA/PEO)30 coating exhibited electrochemical stability up to 5 V.

9.
Sci Rep ; 12(1): 18272, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316362

RESUMO

A novel crosslinked electrospun nanofibrous membrane with maleated lignin (ML) and poly(acrylonitrile) (PAN) is presented as a separator for lithium-ion batteries (LIBs). Alkali lignin was treated with an esterification agent of maleic anhydride, resulting in a substantial hydroxyl group conversion to enhance the reactivity and mechanical properties of the final nanofiber membranes. The maleated lignin (ML) was subsequently mixed with UV-curable formulations (up to 30% wt) containing polyethylene glycol diacrylate (PEGDA), hydrolyzed 3-(Trimethoxysilyl)propyl methacrylate (HMEMO) as crosslinkers, and poly(acrylonitrile) (PAN) as a precursor polymer. UV-electrospinning was used to fabricate PAN/ML/HMEMO/PEGDA (PMHP) crosslinked membranes. PMHP membranes made of electrospun nanofibers feature a three-dimensional (3D) porous structure with interconnected voids between the fibers. The mechanical strength of PMHP membranes with a thickness of 25 µm was enhanced by the variation of the cross-linkable formulations. The cell assembled with PMHP2 membrane (20 wt% of ML) showed the maximum ionic conductivity value of 2.79*10-3 S cm-1, which is significantly higher than that of the same cell with the liquid electrolyte and commercial Celgard 2400 (6.5*10-4 S cm-1). The enhanced LIB efficiency with PMHP2 membrane can be attributed to its high porosity, which allows better electrolyte uptake and demonstrates higher ionic conductivity. As a result, the cell assembled with LiFePO4 cathode, Li metal anode, and PMHP2 membrane had a high initial discharge specific capacity of 147 mAh g-1 at 0.1 C and exhibited outstanding rate performance. Also, it effectively limits the formation of Li dendrites over 1000 h. PMHP separators have improved chemical and physical properties, including porosity, thermal, mechanical, and electrochemical characteristics, compared with the commercial ones.


Assuntos
Lignina , Lítio , Lítio/química , Fontes de Energia Elétrica , Íons/química , Eletrólitos
10.
ACS Appl Mater Interfaces ; 14(36): 41555-41570, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36037310

RESUMO

In this study, Ti-doped ZnO films with flower-rod-like nanostructures were synthesized by the successive ionic layer adsorption and reaction (SILAR) method for enhanced NO gas-sensing applications. The stoichiometric ratio of Ti in the host ZnO lattice was confirmed by atomic absorption and energy-dispersive X-ray spectroscopies. All of the synthesized films exhibited a pure wurtzite hexagonal structure that seemed to deteriorate at high Ti doping contents as was manifested by the measured X-ray diffraction patterns. Scanning electron microscopy images of ZnO revealed the coexistence of porous flower- and rod-like structures, which became finer, denser, and more compact with Ti doping. By UV-vis measurements, the transmittance of the synthesized pure ZnO thin film in the visible region (∼75%) increased by about 10% with Ti doping, and the energy band gap seemed to decrease up to some limit of Ti content. Among the fabricated sensors (based on pure ZnO, 1% Ti-doped, 3% Ti-doped, and 5% Ti-doped ZnO films), the best sensing performance was observed for the 1% Ti-doped ZnO film. At first, this was associated with its high density of oxygen vacancies present on the surface of the film and ionized oxygen vacancies present in the ZnO lattice (confirmed, respectively, by X-ray photoelectron and photoluminescence spectroscopies). Nonetheless, this may also be due to its increased crystallinity (confirmed by X-ray diffraction and photoluminescence spectroscopy), high area-to-volume ratio (confirmed by scanning electron microscopy images), high specific surface area (confirmed by Brunauer-Emmett-Teller measurements) as well as high mobility and carrier concentration (confirmed by Hall measurements). The sensor was highly selective to NO gas and showed notable stability as well as very short response and recovery times, which makes it eligible for the early detection of any indoor or outdoor NO gas leakages.

11.
Molecules ; 27(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684512

RESUMO

Anion Exchange Membrane (AEM) fuel cells have attracted growing interest, due to their encouraging advantages, including high power density and relatively low cost. AEM is a polymer matrix, which conducts hydroxide (OH-) ions, prevents physical contact of electrodes, and has positively charged head groups (mainly quaternary ammonium (QA) groups), covalently bound to the polymer backbone. The chemical instability of the quaternary ammonium (QA)-based head groups, at alkaline pH and elevated temperature, is a significant threshold in AEMFC technology. This review work aims to introduce recent studies on the chemical stability of various QA-based head groups and transportation of OH- ions in AEMFC, via modeling and simulation techniques, at different scales. It starts by introducing the fundamental theories behind AEM-based fuel-cell technology. In the main body of this review, we present selected computational studies that deal with the effects of various parameters on AEMs, via a variety of multi-length and multi-time-scale modeling and simulation methods. Such methods include electronic structure calculations via the quantum Density Functional Theory (DFT), ab initio, classical all-atom Molecular Dynamics (MD) simulations, and coarse-grained MD simulations. The explored processing and structural parameters include temperature, hydration levels, several QA-based head groups, various types of QA-based head groups and backbones, etc. Nowadays, many methods and software packages for molecular and materials modeling are available. Applications of such methods may help to understand the transportation mechanisms of OH- ions, the chemical stability of functional head groups, and many other relevant properties, leading to a performance-based molecular and structure design as well as, ultimately, improved AEM-based fuel cell performances. This contribution aims to introduce those molecular modeling methods and their recent applications to the AEM-based fuel cells research community.


Assuntos
Compostos de Amônio , Membranas Artificiais , Eletrodos , Polímeros/química , Temperatura
12.
Nanomaterials (Basel) ; 12(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630955

RESUMO

Zinc oxide (ZnO) is a well-known semiconductor material due to its excellent electrical, mechanical, and unique optical properties. ZnO nanoparticles are widely used for the industrial-scale manufacture of microelectronic and optoelectronic devices, including metal oxide semiconductor (MOS) gas sensors, light-emitting diodes, transistors, capacitors, and solar cells. This study proposes optimization of synthesis parameters of nanosized ZnO by the electrospinning technique. A Box-Behnken design (BB) has been applied using response surface methodology (RSM) to optimize the selected electrospinning and sintering conditions. The effects of the applied voltage, tip-to-collector distance, and annealing temperature on the size of ZnO particles were successfully investigated. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images confirm the formation of polyvinylpyrrolidone-zinc acetate (PVP-ZnAc) fibers and nanostructured ZnO after annealing. X-ray diffraction (XRD) patterns indicate a pure phase of the hexagonal structure of ZnO with high crystallinity. Minimal-sized ZnO nanoparticles were synthesized at a constant applied potential of 16 kV, with a distance between collector and nozzle of 12 cm, flow rate of 1 mL/h, and calcination temperature of 600 °C. The results suggest that nanosized ZnO with precise control of size and morphology can be fabricated by varying electrospinning conditions, precursor solution concentration, and sintering temperature.

13.
Molecules ; 27(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566033

RESUMO

Commercialization of anion exchange membrane fuel cells (AEMFCs) has been limited due to the chemical degradation of various quaternary ammonium (QA) head groups, which affects the transportation of hydroxide (OH−) ions in AEMs. Understanding how various QA head groups bind and interact with hydroxide ions at the molecular level is of fundamental importance to developing high-performance AEMs. In this work, the binding and degradation reaction of hydroxide ions with several QA head groups­(a) pyridinium, (b) 1,4-diazabicyclo [2.2.2] octane (DABCO), (c) benzyltrimethylammonium (BTMA), (d) n-methyl piperidinium, (e) guanidium, and (f) trimethylhexylammonium (TMHA)­are investigated using the density functional theory (DFT) method. Results of binding energies ("∆" EBinding) show the following order of the binding strength of hydroxide ions with the six QA head groups: (a) > (c) > (f) > (d) > (e) > (b), suggesting that the group (b) has a high transportation rate of hydroxide ions via QA head groups of the AEM. This trend is in good agreement with the trend of ion exchange capacity from experimental data. Further analysis of the absolute values of the LUMO energies for the six QA head groups suggests the following order for chemical stability: (a) < (b)~(c) < (d) < (e) < (f). Considering the comprehensive studies of the nucleophilic substitution (SN2) degradation reactions for QA head groups (c) and (f), the chemical stability of QA (f) is found to be higher than that of QA (c), because the activation energy ("∆" EA) of QA (c) is lower than that of QA (f), while the reaction energies ("∆" ER) for QA (c) and QA (f) are similar at the different hydration levels (HLs). These results are also in line with the trends of LUMO energies and available chemical stability data found through experiments.


Assuntos
Compostos de Amônio , Hidróxidos , Troca Iônica , Membranas Artificiais
14.
Sci Rep ; 12(1): 851, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039553

RESUMO

Zinc oxide (ZnO) is one of the most promising metal oxide semiconductor materials, particularly for optical and gas sensing applications. The influence of thickness and solvent on various features of ZnO thin films deposited at ambient temperature and barometric pressure by the sequential ionic layer adsorption and reaction method (SILAR) was carefully studied in this work. Ethanol and distilled water (DW) were alternatively used as a solvent for preparation of ZnO precursor solution. Superficial morphology, crystallite structure, optical and electrical characteristics of the thin films of various thickness are examined applying X-ray diffraction (XRD) system, scanning electron microscopy, the atomic force microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, photoluminescence spectroscopy, Hall effect measurement analysis and UV response study. XRD analysis confirmed that thin films fabricated using ethanol or DW precursor solvents are hexagonal wurtzite ZnO with a preferred growth orientation (002). Furthermore, it was found that thin films made using ethanol are as highly crystalline as thin films made using DW. ZnO thin films prepared using aqueous solutions possess high optical band gaps. However, films prepared with ethanol solvent have low resistivity (10-2 Ω cm) and high electron mobility (750 cm2/Vs). The ethanol solvent-based SILAR method opens opportunities to synthase high quality ZnO thin films for various potential applications.

15.
Polymers (Basel) ; 13(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374640

RESUMO

Conventional carbonate-based liquid electrolytes have safety issues related to their high flammability and easy leakage. Therefore, it is essential to develop alternative electrolytes for lithium-ion batteries (LIBs). As a potential candidate, solid-polymer electrolytes (SPEs) offer enhanced safety characteristics, while to be widely applied their performance still has to be improved. Here, we have prepared a series of UV-photocrosslinked flexible SPEs comprising poly(ethylene glycol) diacrylate (PEGDA), trimethylolpropane ethoxylate triacrylate (ETPTA), and lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) salt, with the addition of polydimethylsiloxane with acrylated terminal groups (acryl-PDMS) to diminish the crystallinity of the poly(ethylene glycol) chain. Polysiloxanes have gained interest for the fabrication of SPEs due to their unique features, such as decrement of glass transition temperature (Tg), and the ability to improve flexibility and facilitate lithium-ion transport. Freestanding, transparent SPEs with excellent flexibility and mechanical properties were achieved without any supporting backbone, despite the high content of lithium salt, which was enabled by their networked structure, the presence of polar functional groups, and their amorphous structure. The highest ionic conductivity for the developed cross-linked SPEs was 1.75 × 10-6 S cm-1 at room temperature and 1.07 × 10-4 S cm-1 at 80 °C. The SPEs demonstrated stable Li plating/stripping ability and excellent compatibility toward metallic lithium, and exhibited high electrochemical stability in a wide range of potentials, which enables application in high-voltage lithium-ion batteries.

16.
Nanomaterials (Basel) ; 10(4)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295192

RESUMO

Light weight carbon nanofibers (CNF) fabricated by a simple electrospinning method and used as a 3D structured current collector for a sulfur cathode. Along with a light weight, this 3D current collector allowed us to accommodate a higher amount of sulfur composite, which led to a remarkable increase of the electrode capacity from 200 to 500 mAh per 1 g of the electrode including the mass of the current collector. Varying the electrospinning solution concentration enabled obtaining carbonized nanofibers of uniform structure and controllable diameter from several hundred nanometers to several micrometers. The electrochemical performance of the cathode deposited on carbonized PAN nanofibers at 800 °C was investigated. An initial specific capacity of 1620 mAh g-1 was achieved with a carbonized PAN nanofiber (cPAN) current collector. It exhibited stable cycling over 100 cycles maintaining a reversible capacity of 1104 mAh g-1 at the 100th cycle, while the same composite on the Al foil delivered only 872 mAh g-1. At the same time, 3D structured CNFs with a highly developed surface have a very low areal density of 0.85 mg cm-2 (thickness of ~25 µm), which is lower for almost ten times than the commercial Al current collector with the same thickness (7.33 mg cm-2).

17.
Nanoscale Res Lett ; 12(1): 459, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28724265

RESUMO

Carbon-coated silica nanoparticles anchored on multi-walled carbon nanotubes (SiO2@C/MWNT composite) were synthesized via a simple and facile sol-gel method followed by heat treatment. Scanning and transmission electron microscopy (SEM and TEM) studies confirmed densely anchoring the carbon-coated SiO2 nanoparticles onto a flexible MWNT conductive network, which facilitated fast electron and lithium-ion transport and improved structural stability of the composite. As prepared, ternary composite anode showed superior cyclability and rate capability compared to a carbon-coated silica counterpart without MWNT (SiO2@C). The SiO2@C/MWNT composite exhibited a high reversible discharge capacity of 744 mAh g-1 at the second discharge cycle conducted at a current density of 100 mA g-1 as well as an excellent rate capability, delivering a capacity of 475 mAh g-1 even at 1000 mA g-1. This enhanced electrochemical performance of SiO2@C/MWNT ternary composite anode was associated with its unique core-shell and networking structure and a strong mutual synergistic effect among the individual components.

18.
Nanoscale Res Lett ; 10(1): 450, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26586150

RESUMO

A free-standing sulfur/nitrogen-doped carbon nanotube (S/N-CNT) composite prepared via a simple solution method was first studied as a cathode material for lithium/sulfur batteries. By taking advantage of the self-weaving behavior of N-CNT, binders and current collectors are rendered unnecessary in the cathode, thereby simplifying its manufacturing and increasing the sulfur weight ratio in the electrode. Transmission electronic microscopy showed the formation of a highly developed core-shell tubular structure consisting of S/N-CNT composite with uniform sulfur coating on the surface of N-CNT. As a core in the composite, the N-CNT with N functionalization provides a highly conductive and mechanically flexible framework, enhancing the electronic conductivity and consequently the rate capability of the material.

19.
ACS Appl Mater Interfaces ; 4(9): 4708-16, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-22909396

RESUMO

We developed a highly efficient, biocompatible surface coating that disperses bacterial biofilms through enzymatic cleavage of the extracellular biofilm matrix. The coating was fabricated by binding the naturally existing enzyme dispersin B (DspB) to surface-attached polymer matrices constructed via a layer-by-layer (LbL) deposition technique. LbL matrices were assembled through electrostatic interactions of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMAA), followed by chemical cross-linking with glutaraldehyde and pH-triggered removal of PMAA, producing a stable PAH hydrogel matrix used for DspB loading. The amount of DspB loaded increased linearly with the number of PAH layers in surface hydrogels. DspB was retained within these coatings in the pH range from 4 to 7.5. DspB-loaded coatings inhibited biofilm formation by two clinical strains of Staphylococcus epidermidis. Biofilm inhibition was ≥98% compared to mock-loaded coatings as determined by CFU enumeration. In addition, DspB-loaded coatings did not inhibit attachment or growth of cultured human osteoblast cells. We suggest that the use of DspB-loaded multilayer coatings presents a promising method for creating biocompatible surfaces with high antibiofilm efficiency, especially when combined with conventional antimicrobial treatment of dispersed bacteria.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Glicosídeo Hidrolases/metabolismo , Antibacterianos/química , Antibacterianos/toxicidade , Proteínas de Bactérias/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/toxicidade , Glicosídeo Hidrolases/química , Humanos , Hidrogéis/química , Ácidos Polimetacrílicos/química , Staphylococcus epidermidis/fisiologia , Propriedades de Superfície
20.
Langmuir ; 28(32): 11948-55, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22816766

RESUMO

We report on the binding of metal ions (Me(2+); Co(2+) and Cu(2+)) with weak polyelectrolyte multilayers (PEMs), as well as on catalytic activity of PEM-Me(2+) films for oxidation of toluene. Using several types of PEM films constructed using branched polyethyleneimine (BPEI) or quaterinized poly-4-vinylpyridines (QPVPs) as polycations and poly(acrylic acid) (PAA) or poly(styrene sulfonate) (PSS) as polyanions, we found that binding of Co(2+) and Cu(2+) ions with a PEM matrix can occur both through coordination to polycationic amino groups and/or ionic binding to polyacid groups. The amount of metal ions loaded within the film increased linearly with film thickness and was strongly dependent on polyelectrolyte type, film assembly pH, and fraction of permanent charge in polymer chains. Among various PEM-Me(2+) systems, BPEI/PAA-Co(2+) films assembled at pH 8.5 show the best catalytic performance, probably because of the preservation of high mobility of Co(2+) ions coordinated to amino groups of BPEI in these films. With BPEI/PAA-Co(2+) films, we demonstrated that films were highly permeable to reagents and reaction products within hundreds of nanometers of the film bulk; i.e., film catalytic activity increased linearly with layer number up to 30 bilayers and slowed for thicker films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...