Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Cell Res ; 392(2): 112026, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32333908

RESUMO

Mineralization disorders with a broad range of etiological factors represent a huge challenge in dental diagnosis and therapy. Hypophosphatasia (HPP) belongs to the rare diseases affecting predominantly mineralized tissues, bones and teeth, and occurs due to mutations in the ALPL gene, which encodes tissue-nonspecific alkaline phosphatase (TNAP). Here we analyzed stem cells from bone marrow (BMSCs), dental pulp (DPSCs) and periodontal ligament (PDLSCs) in the absence and presence of efficient TNAP inhibitors. The differentiation capacity, expression of surface markers, and gene expression patterns of donor-matched dental cells were compared during this in vitro study. Differentiation assays showed efficient osteogenic but low adipogenic differentiation (aD) capacity of PDLSCs and DPSCs. TNAP inhibitor treatment completely abolished the mineralization process during osteogenic differentiation (oD). RNA-seq analysis in PDLSCs, comparing oD with and without TNAP inhibitor levamisole, showed clustered regulation of candidate molecular mechanisms that putatively impaired osteogenesis and mineralization, disequilibrated ECM production and turnover, and propagated inflammation. Combined alteration of cementum formation, mineralization, and elastic attachment of teeth to cementum via elastic fibers may explain dental key problems in HPP. Using this in vitro model of TNAP deficiency in DPSCs and PDLSCs, we provide novel putative target areas for research on molecular cues for specific dental problems in HPP.


Assuntos
Biomarcadores/metabolismo , Polpa Dentária/patologia , Hipofosfatasia/complicações , Células-Tronco Mesenquimais/patologia , Ligamento Periodontal/patologia , Doenças Estomatognáticas/patologia , Adolescente , Adulto , Antirreumáticos/farmacologia , Estudos de Casos e Controles , Diferenciação Celular , Células Cultivadas , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/metabolismo , Feminino , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Levamisol/farmacologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , RNA-Seq , Doenças Estomatognáticas/etiologia , Doenças Estomatognáticas/metabolismo , Transcriptoma/efeitos dos fármacos , Adulto Jovem
2.
Calcif Tissue Int ; 106(6): 655-664, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32140760

RESUMO

Enhanced osteoclast formation and function is a fundamental cause of alterations to bone structure and plays an important role in several diseases impairing bone quality. Recent work revealed that TRP calcium channels 3 and 6 might play a special role in this context. By analyzing the bone phenotype of TRPC6-deficient mice we detected a regulatory effect of TRPC3 on osteoclast function. These mice exhibit a significant decrease in bone volume per tissue volume, trabecular thickness and -number together with an increased number of osteoclasts found on the surface of trabecular bone. Primary bone marrow mononuclear cells from TRPC6-deficient mice showed enhanced osteoclastic differentiation and resorptive activity. This was confirmed in vitro by using TRPC6-deficient RAW 264.7 cells. TRPC6 deficiency led to an increase of TRPC3 in osteoclasts, suggesting that TRPC3 overcompensates for the loss of TRPC6. Raised intracellular calcium levels led to enhanced NFAT-luciferase reporter gene activity in the absence of TRPC6. In line with these findings inhibition of TRPC3 using the specific inhibitor Pyr3 significantly reduced intracellular calcium concentrations and normalized osteoclastic differentiation and resorptive activity of TRPC6-deficient cells. Interestingly, an up-regulation of TRPC3 could be detected in a cohort of patients with low bone mineral density by comparing micro array data sets of circulating human osteoclast precursor cells to those from patients with high bone mineral density, suggesting a noticeable contribution of TRP calcium channels on bone quality. These observations demonstrate a novel regulatory function of TRPC channels in the process of osteoclastic differentiation and bone loss.


Assuntos
Osteoclastos , Osteoporose/metabolismo , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6/metabolismo , Animais , Cálcio/metabolismo , Osso Esponjoso/metabolismo , Humanos , Camundongos , Osteoclastos/metabolismo , Células RAW 264.7
3.
Sci Rep ; 7(1): 5132, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698620

RESUMO

Culture medium of mesenchymal stromal cells (MSCs) is usually supplemented with either human platelet lysate (HPL) or fetal calf serum (FCS). Many studies have demonstrated that proliferation and cellular morphology are affected by these supplements - it is therefore important to determine if they favor outgrowth of different subpopulations and thereby impact on the heterogeneous composition of MSCs. We have isolated and expanded human bone marrow-derived MSCs in parallel with HPL or FCS and demonstrated that HPL significantly increases proliferation and leads to dramatic differences in cellular morphology. Remarkably, global DNA-methylation profiles did not reveal any significant differences. Even at the transcriptomic level, there were only moderate changes in pairwise comparison. Furthermore, the effects on proliferation, cytoskeletal organization, and focal adhesions were reversible by interchanging to opposite culture conditions. These results indicate that cultivation of MSCs with HPL or FCS has no systematic bias for specific cell types.


Assuntos
Plaquetas/química , Meios de Cultura/farmacologia , Células-Tronco Mesenquimais/citologia , Soro/química , Animais , Bovinos , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Extratos Celulares/química , Extratos Celulares/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/química , DNA/metabolismo , Metilação de DNA/efeitos dos fármacos , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Humanos , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/efeitos dos fármacos
4.
Methods Mol Biol ; 1551: 223-269, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28138850

RESUMO

Haplotype resolution of human genomes is essential to describe and interpret genetic variation and its impact on biology and disease. Our approach to haplotyping relies on converting genomic DNA into a fosmid library, which represents the entire diploid genome as a collection of haploid DNA clones of ~40 kb in size. These can be partitioned into pools such that the probability that the same pool contains both parental haplotypes is reduced to ~1 %. This is the key principle of this method, allowing entire pools of fosmids to be massively parallel sequenced, yielding haploid sequence output. Here, we present a detailed protocol for fosmid pool-based next generation sequencing to haplotype-resolve whole genomes including the following steps: (1) generation of high molecular weight DNA fragments of ~40 kb in size from genomic DNA; (2) fosmid cloning and partitioning into 96-well plates; (3) barcoded sequencing library preparation from fosmid pools for next generation sequencing; and (4) computational analysis of fosmid sequences and assembly into contiguous haploid sequences.This method can be used in combination with, but also without, whole genome shotgun sequencing to extensively resolve heterozygous SNPs and structural variants within genomic regions, resulting in haploid contigs of several hundred kb up to several Mb. This method has a broad range of applications including population and ancestry genetics, the clinical interpretation of mutations in personal genomes, the analysis of cancer genomes and highly complex disease gene regions such as MHC. Moreover, haplotype-resolved genome sequencing allows description and interpretation of the diploid nature of genome biology, for example through the analysis of haploid gene forms and allele-specific phenomena. Application of this method has enabled the production of most of the molecular haplotype-resolved genomes reported to date.


Assuntos
Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma Humano/genética , Genômica , Humanos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
5.
Bone ; 94: 75-83, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27777120

RESUMO

Hypophosphatasia (HPP) is a multi-systemic inborn disease with an extraordinary spectrum of severity, ranging from the absence of mineralization to high lethality and it involves different organs including bone, muscle, kidney, lung, gastrointestinal tract and the nervous system. The disease is characterized by low levels of serum alkaline phosphatase, caused by loss-of-function mutations within the ALPL gene that encodes the tissue-nonspecific alkaline phosphatase TNAP. Here we present the functional characterization of a gene mutation, detected in intron 7 of the ALPL gene of a boy with infantile HPP in whom routine sequencing of the coding region failed to detect any mutation. The homozygous c.793del-14_33 mutation results in the loss of the branch-point motif, relevant for correct ALPL pre-mRNA splicing. The main transcript skips exon 8 and codes for a C-terminally truncated TNAP protein of 275 amino acids, which was detected in peripheral blood mononuclear cells and serum from the patient. The functional characterization of recombinant TNAP275 revealed no enzymatic activity nor any dominant-negative effect, relevant for the heterozygous parents. Nevertheless correct pre-mRNA splicing can take place without the branch-point sequence to a limited extend, as concluded from the ALPL cDNA, obtained from patient's PBMC, and from the low serum AP activity. These data reaffirm that in clear cut clinical cases, where conventional sequencing including the coding sequence and direct exon-intron-boundaries fails to detect mutations, deeper analyses of regulatory important motifs like branch-point sequences are required to establish a genetic diagnosis.


Assuntos
Fosfatase Alcalina/genética , Hipofosfatasia/enzimologia , Hipofosfatasia/genética , Íntrons/genética , Deleção de Sequência/genética , Adulto , Processamento Alternativo/genética , Sequência de Bases , Membrana Celular/metabolismo , Pré-Escolar , DNA/genética , Regulação da Expressão Gênica , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Nucleotídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Clin Cases Miner Bone Metab ; 13(2): 151-153, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27920814

RESUMO

We present a 44-year-old female patient with recurrent fragility fractures including an intercondylar femoral fracture and with normal planar bone densitometry. Diagnosis of hypophosphatasia was suggested by low volumetric cortical bone mineral density and laboratory findings. DNA sequencing revealed heterozygous mutations in the exons 5, 6 and 9 of the ALPL gene, thus confirming the suspected diagnosis.

7.
Mamm Genome ; 27(3-4): 111-21, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26803617

RESUMO

We performed exome sequencing for mutation discovery of an ENU (N-ethyl-N-nitrosourea)-derived mouse model characterized by significant elevated plasma alkaline phosphatase (ALP) activities in female and male mutant mice, originally named BAP014 (bone screen alkaline phosphatase #14). We identified a novel loss-of-function mutation within the Fam46a (family with sequence similarity 46, member A) gene (NM_001160378.1:c.469G>T, NP_001153850.1:p.Glu157*). Heterozygous mice of this mouse line (renamed Fam46a (E157*Mhda)) had significantly high ALP activities and apparently no other differences in morphology compared to wild-type mice. In contrast, homozygous Fam46a (E157*Mhda) mice showed severe morphological and skeletal abnormalities including short stature along with limb, rib, pelvis, and skull deformities with minimal trabecular bone and reduced cortical bone thickness in long bones. ALP activities of homozygous mutants were almost two-fold higher than in heterozygous mice. Fam46a is weakly expressed in most adult and embryonic tissues with a strong expression in mineralized tissues as calvaria and femur. The FAM46A protein is computationally predicted as a new member of the superfamily of nucleotidyltransferase fold proteins, but little is known about its function. Fam46a (E157*Mhda) mice are the first mouse model for a mutation within the Fam46a gene.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/patologia , Códon sem Sentido , Exoma , Fosfatase Alcalina/metabolismo , Animais , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Análise Mutacional de DNA , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Expressão Gênica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Camundongos Knockout , Fenótipo
8.
Subcell Biochem ; 76: 323-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26219718

RESUMO

Hypophosphatasia (HPP) is a rare monogenetic and multisystemic disease with involvement of different organs, including bone, muscle, kidney, lung, gastrointestinal tract and the nervous system. The exact metabolic mechanisms of the effects of TNAP deficiency in different tissues are not understood in detail. There is no approved specific treatment for HPP; therefore symptomatic treatment in order to improve the clinical features is of major interest. Enzyme replacement therapy (ERT) is a relatively new type of treatment based on the principle of administering a medical treatment replacing a defective or absent enzyme. Recently ERT with a bone targeted recombinant human TNAP molecule has been reported to be efficient in ten severely affected patients and improved survival of life threatening forms. These results are very promising especially with regard to the skeletal phenotype but it is unclear whether ERT also has beneficial effects for craniosynostosis and in other affected tissues in HPP such as brain and kidney. Long-term data are not yet available and further systematic clinical trials are needed. It is also necessary to establish therapeutic approaches to help patients who are affected by less severe forms of HPP but also suffer from a significant reduction in quality of life. Further basic research on TNAP function and role in different tissues and on its physiological substrates is critical to gain a better insight in the pathogenesis in HPP. This and further experiences in new therapeutic strategies may improve the prognosis and quality of life of patients with all forms of HPP.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/uso terapêutico , Terapia de Reposição de Enzimas , Hipofosfatasia/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Fosfatase Alcalina/administração & dosagem , Fosfatase Alcalina/uso terapêutico , Animais , Proteínas de Transporte/administração & dosagem , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Terapia de Reposição de Enzimas/métodos , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/uso terapêutico , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/uso terapêutico
9.
Bone ; 79: 150-61, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26032516

RESUMO

Patients suffering from the rare hereditary disease hypophosphatasia (HPP), which is based on mutations in the ALPL gene, tend to develop central nervous system (CNS) related issues like epileptic seizures and neuropsychiatric illnesses such as anxiety and depression, in addition to well-known problems with the mineralization of bones and teeth. Analyses of the molecular role of tissue-nonspecific alkaline phosphatase (TNAP) in transgenic SH-SY5Y(TNAPhigh) neuroblastoma cells compared to SH-SY5Y(TNAPlow) cells indicate that the enzyme influences the expression levels of neuronal marker genes like RNA-binding protein, fox-1 homolog 3 (NEUN) and enolase 2, gamma neuronal (NSE) as well as microtubule-binding proteins like microtubule-associated protein 2 (MAP2) and microtubule-associated protein tau (TAU) during neurogenic differentiation. Fluorescence staining of SH-SY5Y(TNAPhigh) cells reveals TNAP localization throughout the whole length of the developed projection network and even synapsin Ι co-localization with strong TNAP signals at some spots at least at the early time points of differentiation. Additional immunocytochemical staining shows higher MAP2 expression in SH-SY5Y(TNAPhigh) cells and further a distinct up-regulation of tau and MAP2 in the course of neurogenic differentiation. Interestingly, transgenic SH-SY5Y(TNAPhigh) cells are able to develop longer cellular processes compared to control cells after stimulation with all-trans retinoic acid (RA). Current therapies for HPP prioritize improvement of the bone phenotype. Unraveling the molecular role of TNAP in extraosseous tissues, like in the CNS, will help to improve treatment strategies for HPP patients. Taking this rare disease as a model may also help to dissect TNAP's role in neurodegenerative diseases and even improve future treatment of common pathologies.


Assuntos
Fosfatase Alcalina/metabolismo , Diferenciação Celular/genética , Neurônios/enzimologia , Western Blotting , Linhagem Celular Tumoral , Humanos , Hipofosfatasia/genética , Imuno-Histoquímica , Neurônios/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Transgenes
10.
Mol Cancer ; 13: 265, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25496233

RESUMO

BACKGROUND: Anti-resorptive bisphosphonates (BP) are used for the treatment of osteoporosis and bone metastases. Clinical studies indicated a benefit in survival and tumor relapse in subpopulations of breast cancer patients receiving zoledronic acid, thus stimulating the debate about its anti-tumor activity. Amino-bisphosphonates in nM concentrations inhibit farnesyl pyrophosphate synthase leading to accumulation of isopentenyl pyrophosphate (IPP) and the ATP/pyrophosphate adduct ApppI, which induces apoptosis in osteoclasts. For anti-tumor effects µM concentrations are needed and a sensitizer for bisphosphonate effects would be beneficial in clinical anti-tumor applications. We hypothesized that enhancing intracellular pyrophosphate accumulation via inhibition of probenecid-sensitive channels and transporters would sensitize tumor cells for bisphosphonates anti-tumor efficacy. METHOD: MDA-MB-231, T47D and MCF-7 breast cancer cells were treated with BP (zoledronic acid, risedronate, ibandronate, alendronate) and the pyrophosphate channel inhibitors probenecid and novobiocin. We determined cell viability and caspase 3/7 activity (apoptosis), accumulation of IPP and ApppI, expression of ANKH, PANX1, ABCC1, SLC22A11, and the zoledronic acid target gene and tumor-suppressor KLF2. RESULTS: Treatment of MDA-MB-231 with BP induced caspase 3/7 activity, with zoledronic acid being the most effective. In MCF-7 and T47D either BP markedly suppressed cell viability with only minor effects on apoptosis. Co-treatment with probenecid enhanced BP effects on cell viability, IPP/ApppI accumulation as measurable in MCF-7 and T47D cells, caspase 3/7 activity and target gene expression. Novobiocin co-treatment of MDA-MB-231 yielded identical results on viability and apoptosis compared to probenecid, rendering SLC22A family members as candidate modulators of BP effects, whereas no such evidence was found for ANKH, ABCC1 and PANX1. CONCLUSIONS: In summary, we demonstrate effects of various bisphosphonates on caspase 3/7 activity, cell viability and expression of tumor suppressor genes in breast cancer cells. Blocking probenecid and novobiocin-sensitive channels and transporters enhances BP anti-tumor effects and renders SLC22A family members as good candidates as BP modulators. Further studies will have to unravel if treatment with such BP-sensitizers translates into preclinical and clinical efficacy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Difosfonatos/farmacologia , Probenecid/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Conexinas/metabolismo , Ácido Etidrônico/análogos & derivados , Ácido Etidrônico/farmacologia , Feminino , Hemiterpenos/farmacologia , Humanos , Ácido Ibandrônico , Imidazóis/farmacologia , Células MCF-7 , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Compostos Organofosforados/farmacologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Ácido Risedrônico , Ácido Zoledrônico
11.
Eur J Hum Genet ; 22(10): 1160-4, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24569605

RESUMO

Hypophosphatasia (HPP) is a clinically heterogeneous rare, inherited disorder of bone and mineral metabolism with extensive allelic heterogeneity in the ALPL gene. In this report, we present a family with heterozygous parents (maternal p.(Glu191Lys), paternal p.(Gly334Asp) mutations in the ALPL gene) and four children (one genotypically normal, one heterozygous carrier and two compound heterozygous) showing an unexpected high phenotypic variability. One of the compound heterozygous showed clinical symptoms of the mild childhood form mainly affecting the teeth. The other one was more seriously affected with severe failure to thrive, delayed motor development, need for oxygen supply and profound mineralization deficit compatible with an infantile form of HPP. Functional in vitro studies identified p.(Glu191Lys) as mild (68%, no dominant-negative effect) and p.(Gly334Asp) as severely affected allele (1.2%, dominant-negative effect). In vitro simulation of the children's genetic status showed a residual AP activity of 29%, while the biochemical AP activity in the serum was comparably reduced in both children (22 and 36 U/l). This family report indicates that mapping ALPL mutations within the gene does not necessarily help to predict the clinical severity of the phenotype. Therefore, results of prenatal diagnostics have to be interpreted with caution and prenatal genetic diagnosis and counseling for HPP should be provided within an experienced multidisciplinary team. Research about other confounding factors is urgently needed.


Assuntos
Variação Genética , Hipofosfatasia/diagnóstico , Hipofosfatasia/genética , Fenótipo , Adolescente , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Alelos , Criança , Pré-Escolar , Mapeamento Cromossômico , Feminino , Estudos de Associação Genética , Aconselhamento Genético , Células HEK293 , Heterozigoto , Humanos , Lactente , Mutação , Diagnóstico Pré-Natal
12.
PLoS One ; 7(1): e29959, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22242193

RESUMO

1,25-dihydroxyvitamin D3 (1,25D3) was reported to induce premature organismal aging in fibroblast growth factor-23 (Fgf23) and klotho deficient mice, which is of main interest as 1,25D3 supplementation of its precursor cholecalciferol is used in basic osteoporosis treatment. We wanted to know if 1,25D3 is able to modulate aging processes on a cellular level in human mesenchymal stem cells (hMSC). Effects of 100 nM 1,25D3 on hMSC were analyzed by cell proliferation and apoptosis assay, ß-galactosidase staining, VDR and surface marker immunocytochemistry, RT-PCR of 1,25D3-responsive, quiescence- and replicative senescence-associated genes. 1,25D3 treatment significantly inhibited hMSC proliferation and apoptosis after 72 h and delayed the development of replicative senescence in long-term cultures according to ß-galactosidase staining and P16 expression. Cell morphology changed from a fibroblast like appearance to broad and rounded shapes. Long term treatment did not induce lineage commitment in terms of osteogenic pathways but maintained their clonogenic capacity, their surface marker characteristics (expression of CD73, CD90, CD105) and their multipotency to develop towards the chondrogenic, adipogenic and osteogenic pathways. In conclusion, 1,25D3 delays replicative senescence in primary hMSC while the pro-aging effects seen in mouse models might mainly be due to elevated systemic phosphate levels, which propagate organismal aging.


Assuntos
Senescência Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/citologia , Vitamina D/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Transformada , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Fator de Crescimento de Fibroblastos 23 , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Imunofenotipagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Camundongos , Células-Tronco Multipotentes/efeitos dos fármacos , Células-Tronco Multipotentes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Calcitriol/metabolismo , Fatores de Tempo , Vitamina D/farmacologia , beta-Galactosidase/metabolismo
13.
Eur Cell Mater ; 20: 344-55, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21154241

RESUMO

Mechanical forces are translated into biochemical signals and contribute to cell differentiation and phenotype maintenance. Mesenchymal stem cells and their tissue-specific offspring, as osteoblasts and chondrocytes, cells of cardiovascular tissues and lung cells are sensitive to mechanical loading but molecules and mechanisms involved have to be unraveled. It is well established that cellular mechanotransduction is mediated e.g. by activation of the transcription factor SP1 and by kinase signaling cascades resulting in the activation of the AP1 complex. To investigate cellular mechanisms involved in mechanotransduction and to analyze substances, which modulate cellular mechanosensitivity reporter gene constructs, which can be transfected into cells of interest might be helpful. Suitable small-scale bioreactor systems and mechanosensitive reporter gene constructs are lacking. To analyze the molecular mechanisms of mechanotransduction and its crosstalk with biochemically induced signal transduction, AP1 and SP1 luciferase reporter gene constructs were cloned and transfected into various cell lines and primary cells. A newly developed bioreactor and small-scale 24-well polyurethane dishes were used to apply cyclic stretching to the transfected cells. 1 Hz cyclic stretching for 30 min in this system resulted in a significant stimulation of AP1 and SP1 mediated luciferase activity compared to unstimulated cells. In summary we describe a small-scale cell culture/bioreactor system capable of analyzing subcellular crosstalk mechanisms in mechanotransduction, mechanosensitivity of primary cells and of screening the activity of putative mechanosensitizers as new targets, e.g. for the treatment of bone loss caused by both disuse and signal transduction related alterations of mechanotransduction.


Assuntos
Técnicas de Cultura de Células , Genes Reporter , Luciferases/biossíntese , Mecanotransdução Celular , Poliuretanos , Reatores Biológicos , Proteínas de Transporte/biossíntese , Adesão Celular , Técnicas de Cultura de Células/instrumentação , Linhagem Celular , Proliferação de Células , Citocinas/biossíntese , Análise de Elementos Finitos , Humanos , Luciferases/genética , Células-Tronco Mesenquimais/fisiologia , Proteínas Recombinantes/biossíntese , Elementos de Resposta , Fator de Transcrição Sp1/genética , Estresse Fisiológico/genética , Fator de Transcrição AP-1/genética
14.
J Mol Endocrinol ; 42(3): 249-60, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19060179

RESUMO

Retinoic acid (RA) acts as an anti-proliferative and redifferentiation agent in the therapy of thyroid carcinoma. Our previous studies demonstrated that pretreatment of follicular thyroid carcinoma cell lines FTC-133 and FTC-238 resulted in decreased in vitro proliferation rates and reduced tumor cell growth of xenotransplants. In addition to the previous results, we found that RA led to decreased vitality and invasiveness of FTC-133 and FTC-238 cells as they reacted with reduction of intracellular ATP levels and number of migrated cells respectively. However, the molecular mechanisms by which RA mediates these effects are not well understood. Two-dimensional (2D) screening of the proteins related to ATP metabolism and western blot analysis revealed alpha-enolase (ENO1) to be down-regulated in FTC-133 and FTC-238 cells after RA treatment. 2D gel detection and mass spectrometric analysis revealed that ENO1 existed as three separate protein spots of distinct pIs (ENO1-A1-A3). Comparative 2D difference gel electrophoresis analysis of fluorescently labeled protein samples of RA-treated and untreated FTC-133 demonstrated a selective down-regulation of ENO1-A1 which we identified as a phosphoprotein. RA caused the dephosphorylation of ENO1-A1. Both, RA-mediated and specific knock-down of ENO1/MBP-1 resulted in the reduction of MYC oncoprotein, and simultaneously decreased proliferation rates of FTC-133 and FTC-238 cell lines. In summary, the RA-mediated down-regulation of the ENO1 gene products and MYC oncoprotein provides a novel molecular mechanism facilitating the anti-proliferative effect of RA in human thyroid carcinoma cells and suggests new pathways for supportive RA therapies.


Assuntos
Biomarcadores Tumorais/fisiologia , Movimento Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fosfopiruvato Hidratase/fisiologia , Neoplasias da Glândula Tireoide/metabolismo , Tretinoína/farmacologia , Proteínas Supressoras de Tumor/fisiologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel Bidimensional , Humanos , Fosfopiruvato Hidratase/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Neoplasias da Glândula Tireoide/tratamento farmacológico , Proteínas Supressoras de Tumor/metabolismo
15.
Biol Chem ; 388(10): 1053-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17937619

RESUMO

The thyroid gland has an exceptionally high selenium content, even during selenium deficiency. At least 11 selenoproteins are expressed, which may be involved in the protection of the gland against the high amounts of H2O2 produced during thyroid hormone biosynthesis. As determined here by in situ hybridization and Northern blotting experiments, glutathione peroxidases (GPx) 1 and 4 and selenoprotein P were moderately expressed, occurring selectively in the follicular cells and in leukocytes of germinal follicles of thyroids affected by Hashimoto's thyroiditis. Selenoprotein 15 was only marginally expressed and distributed over all cell types. GPx3 mRNA was exclusively localized to the thyrocytes, showed the highest expression levels and was down-regulated in 5 of 6 thyroid cancer samples as compared to matched normal controls. GPx3 could be extracted from thyroidal colloid by incubation with 0.5% sodium dodecyl sulfate indicating that this enzyme is (i) secreted into the follicular lumen and (ii) loosely attached to the colloidal thyroglobulin. These findings are consistent with a role of selenoproteins in the protection of the thyroid from possible damage by H2O2. Particularly, GPx3 might use excess H2O2 and catalyze the polymerization of thyroglobulin to the highly cross-linked storage form present in the colloid.


Assuntos
Glutationa Peroxidase/metabolismo , Selenoproteínas/metabolismo , Glândula Tireoide/enzimologia , Northern Blotting , Linhagem Celular Tumoral , Glutationa Peroxidase/análise , Glutationa Peroxidase/genética , Humanos , Peróxido de Hidrogênio/metabolismo , RNA Mensageiro/metabolismo , Glândula Tireoide/metabolismo
16.
Environ Health Perspect ; 115 Suppl 1: 77-83, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18174954

RESUMO

BACKGROUND: There is growing evidence that, in addition to the reproductive system, the hypothalamic-pituitary-thyroid axis is a target of endocrine-disrupting compounds (EDCs). However, this is not reflected adequately in current screening and assessment procedures for endocrine activity that to date determine only general parameters of thyroid function. OBJECTIVE AND METHODS: We used several in vitro and ex vivo assays in an attempt to identify suitable biomarkers for antithyroid action testing a selected panel of putative EDCs. RESULTS: In vitro we detected stimulation or inhibition of iodide uptake into FRTL-5 rat thyroid cells, inhibition of thyroid hormone binding to transthyretin, agonistic or antagonistic effects in a thyroid hormone receptor-dependent reporter assay, and inhibition of thyroid peroxidase using a novel assay system based on human recombinant thyroperoxidase that might be suitable for routine screening for potential EDCs. In rats, chronic application of several EDCs led to changes in thyroid morphology, alterations of thyrotropin and thyroid hormone serum levels as well as alterations in peripheral thyroid hormone-regulated end points such as malic enzyme and type I 5'-deiodinase activity. CONCLUSIONS: As the effects of EDCs do not reflect classic mechanisms of hormone-dependent regulation and feedback, we believe multitarget and multimodal actions of EDCs affect the hypothalamic-pituitary-thyroid axis. These complex effects require a diverse approach for screening, evaluation, and risk assessment of potential antithyroid compounds. This approach involves novel in vitro or cell-based screening assays in order to assess thyroid hormone synthesis, transport, metabolism, and action as well as in vivo assays to measure thyroid hormone-regulated tissue-specific and developmental end points in animals.


Assuntos
Disruptores Endócrinos/toxicidade , Glândula Tireoide/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Animais , Biomarcadores , Linhagem Celular , Feminino , Técnicas In Vitro , Iodeto Peroxidase/efeitos dos fármacos , Iodeto Peroxidase/metabolismo , Iodo/metabolismo , Malato Desidrogenase/efeitos dos fármacos , Malato Desidrogenase/metabolismo , Ratos , Ratos Sprague-Dawley , Glândula Tireoide/metabolismo , Tireotropina/sangue , Tireotropina/efeitos dos fármacos
17.
Endocrinology ; 147(12): 5883-92, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16959840

RESUMO

Important enzymes for thyroid hormone metabolism, antioxidative defense, and intracellular redox control contain selenocysteine (Sec) in their active centers. Expression of these selenoproteins is tightly controlled, and a sex-specific phenotype is observed on disturbance of selenium (Se) transport in mice. Therefore, we analyzed Se concentrations and expression levels of several selenoproteins including type I iodothyronine deiodinase (Dio1) and glutathione peroxidase (GPx) isozymes in male and female mice. On regular lab chow, serum Se levels were comparable, but serum GPx3 activity was higher in females than males (1.3-fold). Selenoprotein P (SePP) mRNA levels were higher in livers (1.3-fold) and lower in kidneys (to 31%) in female compared with male mice. Orchidectomy alleviated the sex-specific differences in SePP mRNA amounts, indicating modulatory effects of androgens on SePP expression. Female mice expressed higher levels of Dio1 mRNA in kidney (2.6-fold) and liver (1.4-fold) in comparison with male mice. This sexual dimorphic expression of Dio1 mRNA was paralleled by increased Dio1 activity in female kidney (1.8-fold) but not in liver in which males expressed higher Dio1 activity (2.8-fold). Interestingly, Se deficiency decreased Dio1 activity more effectively in males than females, and resulting hepatic enzyme levels were then comparable between the sexes. At the same time, the sex-specific difference of Dio1 activity widened in kidney. Orchidectomy or estradiol treatment of ovariectomized females impacted stronger on renal than hepatic Dio1 expression. Thus, we conclude that Se-dependent posttranscriptional mechanisms are operational that affect either translational efficiency or Dio1 stability in a sex- and tissue-specific manner.


Assuntos
Regulação da Expressão Gênica/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Selênio/metabolismo , Selênio/fisiologia , Selenoproteínas/metabolismo , Caracteres Sexuais , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônios Esteroides Gonadais/farmacologia , Iodeto Peroxidase/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Orquiectomia/efeitos adversos , Especificidade de Órgãos , Ovariectomia/efeitos adversos , Fatores de Alongamento de Peptídeos/metabolismo , Selênio/sangue
18.
Br J Nutr ; 95(6): 1171-6, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16768841

RESUMO

Consumption of soya-based nutrients is increasing in modern society because of their potentially protective effects against chronic diseases. Soya products are also heavily advertised as alternative drugs for relief from symptoms of the menopause and for hormone replacement therapy. However, because of their oestrogenic activity, negative effects of isoflavones have been postulated. Therefore, we analysed influences of soya isoflavones, major soya constituents with endocrine activity, on thyroxine (T4) binding to its distribution proteins. Serum binding of (125)I-labelled L-T4 was analysed in the absence or presence of increasing concentrations of soya isoflavones using non-denaturing PAGE for analysis. Complete displacement of [(125)I]T4 binding to transthyretin (TTR) was observed in human serum incubated with genistein at concentrations >10 microM; interference started at >0.1 microM. Glycitein showed decreased and daidzein the lowest displacement potency. [(125)I]T4 was displaced to albumin in rat and to T4-binding globulin in human serum. Soya isoflavones also obstruct [(125)I]T4 binding to TTR in human cerebrospinal fluid (CSF). The inhibitory effect was confirmed in direct binding assays using purified TTR with 50% inhibitory concentration values of 0.07 microM for genistein, 0.2 microM for glycitein and 1.8 microM for daidzein. The present study underlined a potent competition of soya isoflavones for T4 binding to TTR in serum and CSF. Isoflavones might alter free thyroid hormone concentrations resulting in altered tissue availability and metabolism. As a consequence of this interference, one could expect a disturbance in the feedback regulation of hormonal networks, including the pituitary-thyroid-periphery axis during development and in adult organisms.


Assuntos
Genisteína/metabolismo , Inibidores do Crescimento/metabolismo , Pré-Albumina/metabolismo , Animais , Ligação Competitiva , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Genisteína/química , Genisteína/farmacologia , Inibidores do Crescimento/química , Humanos , Radioisótopos do Iodo/metabolismo , Isoflavonas/química , Isoflavonas/metabolismo , Isoflavonas/farmacologia , Ligantes , Pré-Albumina/química , Ratos , Ratos Wistar , Tiroxina/química , Tiroxina/metabolismo , Proteínas de Ligação a Tiroxina/metabolismo
19.
Thyroid ; 15(5): 405-16, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15929660

RESUMO

Hürthle cell carcinomas (HTC) are characterized by mitochondrial amplification and enhanced oxygen metabolism. To clarify if defects in enzymes scavenging reactive oxygen species are involved in the pathogenesis of HTC, we analyzed selenium (Se)-dependent expression of various detoxifying selenoproteins in the HTC cell line XTC.UC1. Glutathione peroxidase and thioredoxin reductase activity was found both in cell lysates and conditioned media of XTC.UC1 cells and was increased by Na(2)SeO(3). Western blot analysis demonstrated the presence of thioredoxin reductase both in cell lysates and conditioned media and of glutathione peroxidase 3 in conditioned media. Type I 5'-deiodinase, another selenoprotein that catalyzes thyroid hormone metabolism, was detectable only in cell lysates by enzyme assay and Western blot, and responded to stimulation by both Na(2)SeO(3) and retinoic acid. A selenoprotein P signal was detected in conditioned media by Western blot, but was not enhanced by Na(2)SeO(3) treatment. In situ hybridization revealed glutathione peroxidase mRNAs in HTC specimen; glutathione peroxidase 3 mRNA levels were reduced. These data suggest adequate expression and Se-dependent regulation of a couple of selenoproteins involved in antioxidant defense and thyroid hormone metabolism in XTC.UC1 cells, so far giving no evidence of a role of these proteins in the pathogenesis of HTCs.


Assuntos
Adenoma Oxífilo/metabolismo , Proteínas/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Adenoma Oxífilo/enzimologia , Western Blotting , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , DNA Complementar/biossíntese , DNA Complementar/genética , Sequestradores de Radicais Livres/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Hibridização In Situ , Iodeto Peroxidase/metabolismo , Peróxidos/metabolismo , Selenoproteína P , Selenoproteínas , Tiorredoxina Dissulfeto Redutase/metabolismo , Neoplasias da Glândula Tireoide/enzimologia
20.
Eur J Endocrinol ; 151(4): 497-502, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15476451

RESUMO

OBJECTIVE: Proinflammatory cytokines are involved in the pathogenesis of non-thyroidal illness (NTI), as shown by studies with IL-6-/- and IL-12-/- mice. Interleukin (IL)-6 changes peripheral thyroid hormone metabolism, and IL-12 seems to be involved in the regulation of the central part of the hypothalamic-pituitary-thyroid (HPT) axis during illness. IL-18 is a proinflammatory cytokine which shares important biological properties with IL-12, such as interferon (IFN)-gamma-inducing activity. DESIGN: By studying the changes in the HPT-axis during bacterial lipopolysaccharide (LPS)-induced illness in IL-18-/-, IFNgammaR-/- and wild-type (WT) mice, we wanted to unravel the putative role of IL-18 and IFNgamma in the pathogenesis of NTI. RESULTS: LPS induced a decrease in pituitary type 1 deiodinase (D1) activity (P<0.05, ANOVA) in WT mice, but not in IL-18-/- mice, while the decrease in D2 activity was similar in both strains. LPS decreased serum thyroid hormone levels and liver D1 mRNA within 24 h similarly in IL-18-/-, and WT mice. The expression of IL-1, IL-6 and IFNgamma mRNA expression was significantly lower in IL-18-/- mice than in WT, while IL-12 mRNA expression was similar. IFNgammaR-/- mice had higher basal D1 activity in the pituitary than WT mice (P<0.05); LPS induced a decrease of D2, but not of D1, activity in the pituitary which was similar in both strains. In the liver, the LPS-induced increase in cytokine expression was not different between IFNgammaR-/- mice and WT mice, and the decrease in serum T3 and T4 levels and hepatic D1 mRNA was also similar. CONCLUSIONS: The relative decrease in serum T3 and T4 and liver D1 mRNA in response to LPS is similar in IL-18-/-, IFNgammaR-/- and WT mice despite significant changes in hepatic cytokine induction. However, the LPS-induced decrease in D1 activity in the pituitary of WT mice is absent in IL-18-/- mice; in contrast, LPS did not decrease pituitary D1 activity in the IFNgammaR-/- mice or their WT, which might be due to the genetic background of the mice. Our results suggest that IL-18 is also involved in the regulation of the central part of the HPT axis during illness.


Assuntos
Sistema Hipotálamo-Hipofisário/fisiopatologia , Interleucina-18/genética , Hipófise/fisiopatologia , Glândula Tireoide/fisiologia , Animais , Sistema Hipotálamo-Hipofisário/imunologia , Inflamação/imunologia , Inflamação/fisiopatologia , Interleucina-18/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Hipófise/imunologia , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Receptor de Interferon gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...