Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Comp Biol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760886

RESUMO

Flight muscle histolysis is a widespread strategy used by insects to break down functional flight muscle and modulate the energetic costs associated with flight muscle use and maintenance. The variable field cricket, Gryllus lineaticeps, undergoes histolysis during their transition between dispersal flight and reproduction. Despite the importance of histolysis on insect reproduction and fitness, the molecular mechanisms driving this flight muscle breakdown are not well understood. Here, we show that beclin-mediated autophagy, a conserved lysosomal-dependent degradation process, drives breakdown of dorsal longitudinal flight muscle in female flight capable G. lineaticeps. We found that female G. lineaticeps activate autophagy in their dorsal longitudinal flight muscle (DLM), but to a greater extent than the neighboring dorsoventral flight muscle (DVM) during histolysis. RNA interference knockdown of beclin, a gene which encodes a critical autophagy initiation protein, delayed DLM histolysis, but did not affect DVM histolysis. This suggests that crickets selectively activate autophagy to break down the DLMs, while maintaining DVM function for other fitness-relevant activities such as walking. Overall, we confirmed that autophagy is a critical pathway used to remodel flight muscle cells during flight muscle histolysis, providing novel insights into the mechanisms underlying a major life history transition between dispersal and reproduction.

2.
Cell Stress Chaperones ; 29(3): 425-436, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608858

RESUMO

Anhydrobiotic species can survive virtually complete water loss by entering a reversible ametabolic glassy state that may persist for years in ambient conditions. The Pv11 cell line was derived from the egg mass of the anhydrobiotic midge, Polypedilum vanderplanki, and is currently the only available anhydrobiotic cell line. Our results demonstrate that the necessary preconditioning for Pv11 cells to enter anhydrobiosis causes autophagy and reduces mitochondrial respiration by over 70%. We speculate that reorganizing cellular bioenergetics to create and conserve energy stores may be valuable to successfully recover after rehydration. Furthermore, mitochondria in preconditioned cells lose their membrane potential during desiccation but rapidly restore it within 30 min upon rehydration, demonstrating that the inner mitochondrial membrane integrity is well-preserved. Strikingly, the nucleolus remains visible immediately upon rehydration in preconditioned cells while absent in control cells. In contrast, a preconditioning-induced membraneless organelle reformed after rehydration, demonstrating that membraneless organelles in Pv11 cells can be either stabilized or recovered. Staining the endoplasmic reticulum and the Golgi apparatus revealed that these organelles fragment during preconditioning. We hypothesize that this process reduces sheering stress caused by rapid changes in cellular volume during desiccation and rehydration. Additionally, preconditioning was found to cause the filamentous-actin (F-actin) network to disassemble significantly and reduce the fusion of adjacent plasma membranes. This study offers several exciting avenues for future studies in the animal model and Pv11 cell line that will further our understanding of anhydrobiosis and may lead to advancements in storing sensitive biologics at ambient temperatures for months or years.


Assuntos
Dessecação , Mitocôndrias , Animais , Linhagem Celular , Mitocôndrias/metabolismo , Organelas/metabolismo , Autofagia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo
3.
Cryobiology ; 114: 104793, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37979827

RESUMO

One of the most common life-saving medical procedures is a red blood cell (RBC) transfusion. Unfortunately, RBCs for transfusion have a limited shelf life after donation due to detrimental storage effects on their morphological and biochemical properties. Inspired by nature, a biomimetics approach was developed to preserve RBCs for long-term storage using compounds found in animals with a natural propensity to survive in a frozen or desiccated state for decades. Trehalose was employed as a cryoprotective agent and added to the extracellular freezing solution of porcine RBCs. Slow cooling (-1 °C min-1) resulted in almost complete hemolysis (1 ± 1 % RBC recovery), and rapid cooling rates had to be used to achieve satisfactory cryopreservation outcomes. After rapid cooling, the highest percentage of RBC recovery was obtained by plunging in liquid nitrogen and thawing at 55 °C, using a cryopreservation solution containing 300 mM trehalose. Under these conditions, 88 ± 8 % of processed RBCs were recovered and retained hemoglobin (14 ± 2 % hemolysis). Hemoglobin's oxygen-binding properties of cryopreserved RBCs were not significantly different to unfrozen controls and was allosterically regulated by 2,3-bisphosphoglycerate. These data indicate the feasibility of using trehalose instead of glycerol as a cryoprotective compound for RBCs. In contrast to glycerol, trehalose-preserved RBCs can potentially be transfused without time-consuming washing steps, which significantly facilitates the usage of cryopreserved transfusible units in trauma situations when time is of the essence.


Assuntos
Criopreservação , Crioprotetores , Animais , Suínos , Crioprotetores/química , Criopreservação/métodos , Trealose/farmacologia , Trealose/metabolismo , Glicerol/farmacologia , Glicerol/metabolismo , Hemólise , Preservação de Sangue/métodos , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Hemoglobinas/farmacologia , Oxigênio/metabolismo
4.
Molecules ; 27(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500407

RESUMO

The proteins glutamate dehydrogenase (GDH) and mitoNEET are both targets of drug development efforts to treat metabolic disorders, cancer, and neurodegenerative diseases. However, these two proteins differ starkly in the current knowledge about ligand binding sites. MitoNEET is a [2Fe-2S]-containing protein with no obvious binding site for small ligands observed in its crystal structures. In contrast, GDH is known to have a variety of ligands at multiple allosteric sites thereby leading to complex regulation in activity. In fact, while GDH can utilize either NAD(H) or NADP(H) for catalysis at the active site, only NAD(H) binds at a regulatory site to inhibit GDH activity. Previously, we found that mitoNEET forms a covalent bond with GDH in vitro and increases the catalytic activity of the enzyme. In this study we evaluated the effects of mitoNEET binding on the allosteric control of GDH conferred by inhibitors. We examined all effectors using NAD or NADP as the coenzyme to determine allosteric linkage by the NAD-binding regulatory site. We found that GDH activity, in the presence of the inhibitory palmitoyl-CoA and EGCG, can be rescued by mitoNEET, regardless of the coenzyme used. This suggests that mitoNEET rescues GDH by stabilizing the open conformation.


Assuntos
Glutamato Desidrogenase , NAD , NAD/metabolismo , NADP/metabolismo , Regulação Alostérica , Proteínas Mitocondriais/metabolismo , Ligantes
5.
ACS Chem Biol ; 17(10): 2716-2722, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36194135

RESUMO

MitoNEET is a [2Fe-2S] redox active mitochondrial protein belonging to the CDGSH iron-sulfur domain (CISD) family of proteins. MitoNEET has been implicated as a potential target for drug development to treat various disorders, including type-2 diabetes, cancer, and Parkinson's disease. However, the specific cellular function(s) for mitoNEET still remains to be fully elucidated, and this presents a significant roadblock in rational drug development. Here, we show that mitoNEET binds the enzymatic cofactor pyridoxal phosphate (PLP) specifically at only one of its 11 lysine residues, Lys55. Lys55 is part of the soluble portion of the protein and is in a hydrogen-bonding network with the histidine residue that ligates the [2Fe-2S] cluster. In the presence of mitoNEET, PLP catalyzes the transamination reaction of the amino acid cysteine and the alpha-keto acid 2-oxoglutarate to form 3-mercaptopyruvate and glutamate. This work identifies, for the first time, mitoNEET as an enzyme with cysteine transaminase activity.


Assuntos
Proteínas Ferro-Enxofre , Proteínas Ferro-Enxofre/química , Fosfato de Piridoxal/metabolismo , Histidina , Cisteína , Transaminases/metabolismo , Ácidos Cetoglutáricos , Lisina , Proteínas Mitocondriais/metabolismo , Ferro/metabolismo , Enxofre , Glutamatos , Hidrogênio/metabolismo
6.
J Exp Bot ; 73(19): 6525-6546, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35793147

RESUMO

To deal with increasingly severe periods of dehydration related to global climate change, it becomes increasingly important to understand the complex strategies many organisms have developed to cope with dehydration and desiccation. While it is undisputed that late embryogenesis abundant (LEA) proteins play a key role in the tolerance of plants and many anhydrobiotic organisms to water limitation, the molecular mechanisms are not well understood. In this review, we summarize current knowledge of the physiological roles of LEA proteins and discuss their potential molecular functions. As these are ultimately linked to conformational changes in the presence of binding partners, post-translational modifications, or water deprivation, we provide a detailed summary of current knowledge on the structure-function relationship of LEA proteins, including their disordered state in solution, coil to helix transitions, self-assembly, and their recently discovered ability to undergo liquid-liquid phase separation. We point out the promising potential of LEA proteins in biotechnological and agronomic applications, and summarize recent advances. We identify the most relevant open questions and discuss major challenges in establishing a solid understanding of how these intriguing molecules accomplish their tasks as cellular sentinels at the limits of surviving water scarcity.


Assuntos
Desidratação , Desenvolvimento Embrionário , Desidratação/metabolismo , Água/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
J Evol Biol ; 35(4): 599-609, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35255175

RESUMO

Life history and metabolism covary, but the mechanisms and individual traits responsible for these linkages remain unresolved. Dispersal capability is a critical component of life history that is constrained by metabolic capacities for energy production. Conflicting relationships between metabolism and life histories may be explained by accounting for variation in dispersal and maximal metabolic rates. We used female wing-polymorphic sand field crickets, Gryllus firmus, selected either for long wings (LW, flight-capable) or short wings (SW, flightless) to test the hypothesis that selection on dispersal capability drives the evolution of metabolic capacities. While resting metabolic rates were similar, long-winged crickets reached higher maximal metabolic rates than short-winged crickets, resulting in improved running performance. We further provided insight into the mechanisms responsible for covariation between life history and metabolism by comparing mitochondrial content of tissues involved in powering locomotion and assessing the function of mitochondria isolated from long- and short-winged crickets. Our results demonstrated that larger metabolic capacities in long-winged crickets were underpinned by increases in mitochondrial content of dorsoventral flight muscle and enhanced bioenergetic capacities of mitochondria within the fat body, a tissue responsible for fuel storage and mobilization. Thus, selection on flight capability correlates with increases in maximal, but not resting metabolic rates, through modifications of tissues powering locomotion at the cellular and organelle levels. This allows organisms to meet high energetic demands of activity for life history. Dispersal capability should therefore explicitly be considered as a potential factor driving the evolution of metabolic capacities.


Assuntos
Gryllidae , Animais , Metabolismo Energético , Feminino , Gryllidae/fisiologia , Fenótipo , Asas de Animais/metabolismo
8.
Biomolecules ; 12(3)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35327618

RESUMO

Group 1 (Dur-19, PF00477, LEA_5) Late Embryogenesis Abundant (LEA) proteins are present in organisms from all three domains of life, Archaea, Bacteria, and Eukarya. Surprisingly, Artemia is the only genus known to include animals that express group 1 LEA proteins in their desiccation-tolerant life-history stages. Bioinformatics analysis of circular dichroism data indicates that the group 1 LEA protein AfLEA1 is surprisingly ordered in the hydrated state and undergoes during desiccation one of the most pronounced disorder-to-order transitions described for LEA proteins from A. franciscana. The secondary structure in the hydrated state is dominated by random coils (42%) and ß-sheets (35%) but converts to predominately α-helices (85%) when desiccated. Interestingly, AfLEA1 interacts with other proteins and nucleic acids, and RNA promotes liquid-liquid phase separation (LLPS) of the protein from the solvent during dehydration in vitro. Furthermore, AfLEA1 protects the enzyme lactate dehydrogenase (LDH) during desiccation but does not aid in restoring LDH activity after desiccation-induced inactivation. Ectopically expressed in D. melanogaster Kc167 cells, AfLEA1 localizes predominantly to the cytosol and increases the cytosolic viscosity during desiccation compared to untransfected control cells. Furthermore, the protein formed small biomolecular condensates in the cytoplasm of about 38% of Kc167 cells. These findings provide additional evidence for the hypothesis that the formation of biomolecular condensates to promote water stress tolerance during anhydrobiosis may be a shared feature across several groups of LEA proteins that display LLPS behaviors.


Assuntos
Dessecação , Drosophila melanogaster , Animais , Artemia , Drosophila melanogaster/metabolismo , Desenvolvimento Embrionário , Proteínas de Plantas/metabolismo , Proteínas/metabolismo
9.
J Therm Biol ; 104: 103186, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35180965

RESUMO

As global temperature shifts due to anthropogenic impacts, seasonal temperatures in shallow aquatic ecosystems are expected to increase. Previous studies on freshwater fishes that experience significant temperature changes during the annual seasons found pronounced physiological restructuring not observed in animals inhabiting more thermally stable environments. Studies evaluating mitochondrial bioenergetics in fish are often performed on animals acclimated to constant temperatures in the laboratory. However, natural habitats are much more complex. Fishes may experience substantial daily and seasonal variation in temperature, energy requirements and resource availability, which are impossible to emulate on acclimation studies. Our study explores the effects of these more complex natural environments on whole-organism thermal tolerance and mitochondrial bioenergetics in bluegill sunfish (Lepomis macrochirus), a native fish to the temperate zone of North America. Compensatory mechanisms and variations in physiological thresholds were observed in specimens acclimatized to the fall season compared to specimens acclimatized to spring and summer seasons. Somatic indices, such as relative weights and hepatosomatic indices, showed significant differences across seasons and critical thermal maxima significantly decreased in the cold acclimatized specimens. Liver mitochondria from L. macrochirus also showed significantly higher uncoupled proton conductance, cytochrome c oxidase (COX) activity, and reduced respiratory control ratios in individuals sampled in the colder season. These findings suggest that mechanisms regulating proton conductance and COX activity modulate mitochondrial function across seasons to sustain physiological fitness in ectotherms inhabiting shallow, inland aquatic habitats.


Assuntos
Ecossistema , Perciformes/fisiologia , Estações do Ano , Aclimatação , Animais , Temperatura Baixa , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Mitocôndrias Hepáticas/metabolismo , América do Norte , Rios , Temperatura
10.
J Vis Exp ; (167)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33554963

RESUMO

Efficient intracellular delivery of biomolecules is required for a broad range of biomedical research and cell-based therapeutic applications. Ultrasound-mediated sonoporation is an emerging technique for rapid intracellular delivery of biomolecules. Sonoporation occurs when cavitation of gas-filled microbubbles forms transient pores in nearby cell membranes, which enables rapid uptake of biomolecules from the surrounding fluid. Current techniques for in vitro sonoporation of cells in suspension are limited by slow throughput, variability in the ultrasound exposure conditions for each cell, and high cost. To address these limitations, a low-cost acoustofluidic device has been developed which integrates an ultrasound transducer in a PDMS-based fluidic device to induce consistent sonoporation of cells as they flow through the channels in combination with ultrasound contrast agents. The device is fabricated using standard photolithography techniques to produce the PDMS-based fluidic chip. An ultrasound piezo disk transducer is attached to the device and driven by a microcontroller. The assembly can be integrated inside a 3D-printed case for added protection. Cells and microbubbles are pushed through the device using a syringe pump or a peristaltic pump connected to PVC tubing. Enhanced delivery of biomolecules to human T cells and lung cancer cells is demonstrated with this acoustofluidic system. Compared to bulk treatment approaches, this acoustofluidic system increases throughput and reduces variability, which can improve cell processing methods for biomedical research applications and manufacturing of cell-based therapeutics.


Assuntos
Acústica/instrumentação , Células/metabolismo , Fluoresceína/metabolismo , Trealose/metabolismo , Células A549 , Células Cultivadas , Meios de Contraste/química , Humanos , Microbolhas , Linfócitos T/citologia , Ultrassom
11.
Cryobiology ; 98: 73-79, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33359645

RESUMO

Despite recent advances in biostabilization, clinical blood supplies still experience shortages and storage limitations for red blood cells (RBCs) have not yet been sufficiently addressed. Storing RBCs in a frozen or dried state is an appealing solution to address storage limitations, but many promising cryoprotectants, including the non-reducing sugar trehalose, are impermeant to mammalian cell membranes and cannot be utilized effectively using currently available compound-loading methods. We found that transient pore formation induced by ultrasound and microbubbles (sonoporation) offers an effective means of loading trehalose into RBCs to facilitate long-term storage in a frozen or desiccated state. The protective potential of trehalose loading was demonstrated by freezing processed RBCs at -1 °C/min to -80 °C, then either storing the cells at -80 °C or lyophilizing them. RBCs were either thawed or rehydrated after 42 days of storage and evaluated for membrane integrity and esterase activity to estimate recovery and cell viability. The intracellular concentration of trehalose reached 40 mM after sonoporation and over 95% of treated RBCs were recovered after loading. Loading of trehalose was sufficient to maintain RBC morphology and esterase activity in most cells during freezing (>90% RBC recovery) and to a lower degree after lyophilization and rehydration (>20% recovery). Combining sonoporation with an integrated fluidics device allowed for rapid loading of up to 70 mM trehalose into RBCs. These results demonstrate the potential of sonoporation-mediated trehalose loading to increase recovery of viable RBCs, which could lead to effective methods for long-term stabilization of RBCs.


Assuntos
Preservação de Sangue , Criopreservação , Eritrócitos , Trealose , Criopreservação/métodos , Crioprotetores , Humanos
12.
J Acoust Soc Am ; 150(6): 4534, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34972278

RESUMO

Cell-based therapies have garnered significant interest to treat cancer and other diseases. Acoustofluidic technologies are in development to improve cell therapy manufacturing by facilitating rapid molecular delivery across the plasma membrane via ultrasound and microbubbles (MBs). In this study, a three-dimensional (3D) printed acoustofluidic device was used to deliver a fluorescent molecule, calcein, to human T cells. Intracellular delivery of calcein was assessed after varying parameters such as MB face charge, MB concentration, flow channel geometry, ultrasound pressure, and delivery time point after ultrasound treatment. MBs with a cationic surface charge caused statistically significant increases in calcein delivery during acoustofluidic treatment compared to MBs with a neutral surface charge (p < 0.001). Calcein delivery was significantly higher with a concentric spiral channel geometry compared to a rectilinear channel geometry (p < 0.001). Additionally, calcein delivery was significantly enhanced at increased ultrasound pressures of 5.1 MPa compared to lower ultrasound pressures between 0-3.8 MPa (p < 0.001). These results demonstrate that a 3D-printed acoustofluidic device can significantly enhance intracellular delivery of biomolecules to T cells, which may be a viable approach to advance cell-based therapies.


Assuntos
Microbolhas , Linfócitos T , Sistemas de Liberação de Medicamentos , Humanos , Ultrassonografia
13.
Proc Natl Acad Sci U S A ; 117(44): 27676-27684, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077592

RESUMO

Proteinaceous liquid-liquid phase separation (LLPS) occurs when a polypeptide coalesces into a dense phase to form a liquid droplet (i.e., condensate) in aqueous solution. In vivo, functional protein-based condensates are often referred to as membraneless organelles (MLOs), which have roles in cellular processes ranging from stress responses to regulation of gene expression. Late embryogenesis abundant (LEA) proteins containing seed maturation protein domains (SMP; PF04927) have been linked to storage tolerance of orthodox seeds. The mechanism by which anhydrobiotic longevity is improved is unknown. Interestingly, the brine shrimp Artemia franciscana is the only animal known to express such a protein (AfrLEA6) in its anhydrobiotic embryos. Ectopic expression of AfrLEA6 (AWM11684) in insect cells improves their desiccation tolerance and a fraction of the protein is sequestered into MLOs, while aqueous AfrLEA6 raises the viscosity of the cytoplasm. LLPS of AfrLEA6 is driven by the SMP domain, while the size of formed MLOs is regulated by a domain predicted to engage in protein binding. AfrLEA6 condensates formed in vitro selectively incorporate target proteins based on their surface charge, while cytoplasmic MLOs formed in AfrLEA6-transfected insect cells behave like stress granules. We suggest that AfrLEA6 promotes desiccation tolerance by engaging in two distinct molecular mechanisms: by raising cytoplasmic viscosity at even modest levels of water loss to promote cell integrity during drying and by forming condensates that may act as protective compartments for desiccation-sensitive proteins. Identifying and understanding the molecular mechanisms that govern anhydrobiosis will lead to significant advancements in preserving biological samples.


Assuntos
Adaptação Fisiológica , Proteínas de Artrópodes/metabolismo , Desidratação/fisiopatologia , Extremófilos/fisiologia , Organelas/metabolismo , Animais , Artemia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/isolamento & purificação , Proteínas de Artrópodes/ultraestrutura , Linhagem Celular , Clonagem Molecular , Biologia Computacional , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Dessecação , Drosophila melanogaster , Embrião não Mamífero , Desenvolvimento Embrionário , Extremófilos/citologia , Microscopia Eletrônica de Varredura , Organelas/ultraestrutura , Pressão Osmótica/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
14.
Biomicrofluidics ; 14(2): 024114, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32341725

RESUMO

Preservation of erythrocytes in a desiccated state for storage at ambient temperature could simplify blood transfusions in austere environments, such as rural clinics, far-forward military operations, and during space travel. Currently, storage of erythrocytes is limited by a short shelf-life of 42 days at 4 °C, and long-term preservation requires a complex process that involves the addition and removal of glycerol from erythrocytes before and after storage at -80 °C, respectively. Natural compounds, such as trehalose, can protect cells in a desiccated state if they are present at sufficient levels inside the cell, but mammalian cell membranes lack transporters for this compound. To facilitate compound loading across the plasma membrane via ultrasound and microbubbles (sonoporation), a polydimethylsiloxane-based microfluidic device was developed. Delivery of fluorescein into erythrocytes was tested at various conditions to assess the effects of parameters such as ultrasound pressure, ultrasound pulse interval, microbubble dose, and flow rate. Changes in ultrasound pressure and mean flow rate caused statistically significant increases in fluorescein delivery of up to 73 ± 37% (p < 0.05) and 44 ± 33% (p < 0.01), respectively, compared to control groups, but no statistically significant differences were detected with changes in ultrasound pulse intervals. Following freeze-drying and rehydration, recovery of viable erythrocytes increased by up to 128 ± 32% after ultrasound-mediated loading of trehalose compared to control groups (p < 0.05). These results suggest that ultrasound-mediated molecular delivery in microfluidic channels may be a viable approach to process erythrocytes for long-term storage in a desiccated state at ambient temperatures.

15.
Biomicrofluidics ; 13(6): 064113, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31768199

RESUMO

Late embryogenesis abundant (LEA) proteins are found in desiccation-tolerant species from all domains of life. Despite several decades of investigation, the molecular mechanisms by which LEA proteins confer desiccation tolerance are still unclear. In this study, dielectrophoresis (DEP) was used to determine the electrical properties of Drosophila melanogaster (Kc167) cells ectopically expressing LEA proteins from the anhydrobiotic brine shrimp, Artemia franciscana. Dielectrophoresis-based characterization data demonstrate that the expression of two different LEA proteins, AfrLEA3m and AfrLEA6, increases cytoplasmic conductivity of Kc167 cells to a similar extent above control values. The impact on cytoplasmic conductivity was surprising, given that the concentration of cytoplasmic ions is much higher than the concentrations of ectopically expressed proteins. The DEP data also supported previously reported data suggesting that AfrLEA3m can interact directly with membranes during water stress. This hypothesis was strengthened using scanning electron microscopy, where cells expressing AfrLEA3m were found to retain more circular morphology during desiccation, while control cells exhibited a larger variety of shapes in the desiccated state. These data demonstrate that DEP can be a powerful tool to investigate the role of LEA proteins in desiccation tolerance and may allow to characterize protein-membrane interactions in vivo, when direct observations are challenging.

16.
Cell Stress Chaperones ; 24(5): 979-990, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31363993

RESUMO

Late embryogenesis abundant (LEA) proteins are intrinsically disordered proteins (IDPs) commonly found in anhydrobiotic organisms and are frequently correlated with desiccation tolerance. Herein we report new findings on AfrLEA6, a novel group 6 LEA protein from embryos of Artemia franciscana. Assessment of secondary structure in aqueous and dried states with circular dichroism (CD) reveals 89% random coil in the aqueous state, thus supporting classification of AfrLEA6 as an IDP. Removal of water from the protein by drying or exposure to trifluoroethanol (a chemical de-solvating agent) promotes a large gain in secondary structure of AfrLEA6, predominated by α-helix and exhibiting minimal ß-sheet structure. We evaluated the impact of physiological concentrations (up to 400 mM) of the disaccharide trehalose on the folding of LEA proteins in solution. CD spectra for AfrLEA2, AfrLEA3m, and AfrLEA6 are unaffected by this organic solute noted for its ability to drive protein folding. AfrLEA6 exhibits its highest concentration in vivo during embryonic diapause, drops acutely at diapause termination, and then declines during development to undetectable values at the larval stage. Maximum cellular titer of AfrLEA6 was 10-fold lower than for AfrLEA2 or AfrLEA3, both group 3 LEA proteins. Acute termination of diapause with H2O2 (a far more effective terminator than desiccation in this Great Salt Lake, UT, population) fostered a rapid 38% decrease in AfrLEA6 content of embryos. While the ultimate mechanism of diapause termination is unknown, disruption of key macromolecules could initiate physiological signaling events necessary for resumption of development and metabolism.


Assuntos
Artemia/embriologia , Diapausa/fisiologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/fisiologia , Proteínas Intrinsicamente Desordenadas/química , Animais , Dessecação , Estrutura Secundária de Proteína
17.
Chem Res Toxicol ; 32(6): 977-981, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31117349

RESUMO

MitoNEET is a CDGSH iron-sulfur protein that has been a target for drug development for diseases such as type-2 diabetes, cancer, and Parkinson's disease. Functions proposed for mitoNEET are as a redox sensor and regulator of free iron in the mitochondria. We have investigated the reactivity of mitoNEET toward the reactive electrophiles 4-hydroxynonenal (HNE) and 4-oxononenal (ONE) that are produced from the oxidation of polyunsaturated fatty acid during oxidative stress. Proteomic, electrophoretic, and spectroscopic analysis has shown that HNE and ONE react in a sequence selective manner that was unexpected considering the structure similarity of these two reactive electrophiles.


Assuntos
Aldeídos/química , Proteínas Mitocondriais/química , Sítios de Ligação , Humanos , Modelos Moleculares , Estrutura Molecular , Oxirredução
18.
Bioorg Med Chem Lett ; 29(7): 901-904, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30770154

RESUMO

Nutrient-deprivation autophagy factor-1 (NAF-1, miner1; gene cisd2) is part of the [2Fe-2S]-containing protein family which includes mitoNEET (gene cisd1) and MiNT (miner2; gene cisd3). These proteins are redox active and are thought to play an important role in cellular energy homeostasis with NAF-1 playing a critical role in calcium regulation and aging. To date, no studies have investigated potential ligand interaction with NAF-1. Here we show that the thiazolidinediones pioglitazone and rosiglitazone along with the mitoNEET ligand, NL-1, bind to NAF-1 with low micromolar affinities. Further, we show that overexpression of NAF-1 in hepatocellular carcinoma (HepG2) cells reduces inhibition of mitochondrial respiration by pioglitazone. Our findings support the need for further efforts of the rational design of selective NAF-1 ligands.


Assuntos
Proteínas de Membrana/metabolismo , Pioglitazona/metabolismo , Rosiglitazona/metabolismo , Células Hep G2 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica
19.
Commun Chem ; 22019.
Artigo em Inglês | MEDLINE | ID: mdl-32382661

RESUMO

MitoNEET (gene cisd1) is a mitochondrial outer membrane [2Fe-2S] protein and is a potential drug target in several metabolic diseases. Previous studies have demonstrated that mitoNEET functions as a redox-active and pH-sensing protein that regulates mitochondrial metabolism, although the structural basis of the potential drug binding site(s) remains elusive. Here we report the crystal structure of the soluble domain of human mitoNEET with a sulfonamide ligand, furosemide. Exploration of the high-resolution crystal structure is used to design mitoNEET binding molecules in a pilot study of molecular probes for use in future development of mitochondrial targeted therapies for a wide variety of metabolic diseases, including obesity, diabetes and neurodegenerative diseases such as Alzheimer's and Parkinson's disease.

20.
Proteomics ; 18(21-22): e1800067, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30144288

RESUMO

This review compares the molecular strategies employed by anhydrobiotic invertebrates to survive extreme water stress. Intrinsically disordered proteins (IDPs) play a central role in desiccation tolerance in all species investigated. Various hypotheses about the functions of anhydrobiosis-related intrinsically disordered (ARID) proteins, including late embryogenesis abundant (LEA) and tardigrade-specific intrinsically disordered proteins, are evaluated by broad sequence characterization. A surprisingly wide range in sequence characteristics, including hydropathy and the frequency and distribution of charges, is discovered. Interestingly, two clusters of similar proteins are found that potentially correlate with distinct functions. This may indicate two broad groups of ARID proteins, composed of one group that folds into functional conformations during desiccation and a second group that potentially displays functions in the hydrated state. A broad range of physiochemical properties suggest that folding may be induced by factors such as hydration level, molecular crowding, and interactions with binding partners. This plasticity may be required to fine-tune the ARID-proteome response at different hydration levels during desiccation. Furthermore, the sequence properties of some LEA proteins share qualities with IDPs known to undergo liquid-liquid phase separations during environmental challenges.


Assuntos
Desidratação/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Invertebrados/metabolismo , Animais , Dessecação , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...