Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(1): 159-169, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38159061

RESUMO

Flash Joule heating of highly porous graphene oxide (GO) aerogel monoliths to ultrahigh temperatures is exploited as a low carbon footprint technology to engineer functional aerogel materials. Aerogel Joule heating to up to 3000 K is demonstrated for the first time, with fast heating kinetics (∼300 K·min-1), enabling rapid and energy-efficient flash heating treatments. The wide applicability of ultrahigh-temperature flash Joule heating is exploited in a range of material fabrication challenges. Ultrahigh-temperature Joule heating is used for rapid graphitic annealing of hydrothermal GO aerogels at fast time scales (30-300 s) and substantially reduced energy costs. Flash aerogel heating to ultrahigh temperatures is exploited for the in situ synthesis of ultrafine nanoparticles (Pt, Cu, and MoO2) embedded within the hybrid aerogel structure. The shockwave heating approach enables high through-volume uniformity of the formed nanoparticles, while nanoparticle size can be readily tuned through controlling Joule-heating durations between 1 and 10 s. As such, the ultrahigh-temperature Joule-heating approach introduced here has important implications for a wide variety of applications for graphene-based aerogels, including 3D thermoelectric materials, extreme temperature sensors, and aerogel catalysts in flow (electro)chemistry.

2.
Nanoscale ; 14(22): 7957-7973, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35635464

RESUMO

To mitigate excessively accumulated carbon dioxide (CO2) in the atmosphere and tackle the associated environmental concerns, green and effective approaches are necessary. The electrocatalytic CO2 reduction reaction (CO2RR) using sustainable electricity under benign reaction conditions represents a viable way to produce value-added and profitable chemicals. In this minireview, recent studies regarding unary Bi electrocatalysts and binary BiSn electrocatalysts are symmetrically categorized and reviewed, as they disclose high faradaic efficiencies toward the production of formate/formic acid, which has a relatively higher value of up to 0.50 $·per kg and has been widely used in the chemical and pharmaceutical industry. In particular, the preparation methodologies, electrocatalyst morphologies, catalytic performances and the corresponding mechanisms are comprehensively presented. The use of solid-state electrolytes showing high economic prospects for directly obtaining high-purity formic acid is highlighted. Finally, the remaining questions and challenges for CO2RR exploitations using Bi-related electrocatalysts are proposed, while perspectives and the corresponding strategies aiming to enhance their entire catalytic functionalities and boost their performance are provided.

3.
Dalton Trans ; 51(3): 836-841, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34935811

RESUMO

Boron nitride (BN) aerogels are three-dimensional bulk materials with exceptional performances in a wide range of areas. However, detailed investigations into the relationship of synthesis, structure, and properties are rare. This study demonstrates the feasibility of tuning the performance of the aerogel by simply altering the relative amount of the precursors in the synthesis, which subsequently leads to the formation of aerogels with distinctive properties such as specific surface areas, porosity, and compressibility. The applications of these structurally different aerogels are exemplified by investigating in a series of important industrial-related areas, such as oil absorption/desorption, direct combustion, adsorptive desulfurisation, and CO2 capture. The study raises the application prospects of BN aerogels in gas-phase catalysis and thermal superinsulation materials.

4.
ACS Appl Mater Interfaces ; 13(30): 36201-36212, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34291894

RESUMO

Joule heating studies on nanoparticle/nanocarbon hybrid aerogels have been reported, but systematic investigations on hydrotalcite-derived catalysts supported onto reduced graphene oxide (rGO) aerogels are rare. In this study, hydrotalcite-derived Cu-Al2O3 nanoparticles were incorporated into a porous and multifunctional rGO aerogel support for fabricating electrically conducting Cu-Al2O3/rGO hybrid aerogels, and their properties were investigated in detail. The hybridization of Cu-Al2O3 with a 3D nanocarbon support network imparts additional functionalities to the widely used functional inorganic nanoparticles, such as direct electrical framework heating and easy regeneration and separation of spent nanoparticles, with well-spaced nanoparticle segregation. 3D variable-range hopping model fitting confirmed that electrons were able to reach the entire aerogel to enable uniform resistive heating. The conductivity of the nanocarbon support framework facilitates uniform and fast heating (up to 636 K/min) of the embedded nanoparticles at very low energy consumption, while the large porosity and high thermal conductivity enable efficient heat dissipation during natural cooling (up to 336 K/min). The thermal stability of the hybrid aerogel was demonstrated by repeated heating/cooling cycling at different temperatures that were relevant to important industrial applications. The facile synthetic approach can be easily adapted to fabricate other types of multifunctional nanoparticle/nanocarbon hybrid aerogels, such as the MgAl-MMO/rGO aerogel and the Ni-Al2O3/rGO aerogel. These findings open up new routes to the functionalization of inorganic nanoparticles and extend their application ranges that involve electrical/thermal heating, temperature-dependent catalysis, sorption, and sensing.

5.
Adv Mater ; 33(27): e2008307, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34046934

RESUMO

New approaches for the engineering of the 3D microstructure, pore modality, and chemical functionality of hierarchically porous nanocarbon assemblies are key to develop the next generation of functional aerogel and membrane materials. Here, interfacially driven assembly of carbon nanotubes (CNT) is exploited to fabricate structurally directed aerogels with highly controlled internal architectures, composed of pseudo-monolayer, CNT microcages. CNT Pickering emulsions enable engineering at fundamentally different length scales, whereby the microporosity, mesoporosity, and macroporosity are decoupled and individually controlled through CNT type, CNT number density, and process energy, respectively. In addition, metal nanocatalysts (Cu, Pd, and Ru) are embedded within the architectures through an elegant sublimation and shock-decomposition approach; introducing the first approach that enables through-volume functionalization of intricate, pre-designed aerogels without microstructural degradation. Catalytic structure-function relationships are explored in a pharma-important amidation reaction; providing insights on how the engineered frameworks enhance catalyst activity. A sophisticated array of advanced tomographic, spectroscopic, and microscopic techniques reveal an intricate 3D assembly of CNT building-blocks and their influence on the functional properties of the enhanced nanocatalysts. These advances set a basis to modulate structure and chemistry of functional aerogel materials independently in a controlled fashion for a variety of applications, including energy conversion and storage, smart electronics, and (electro)catalysis.

6.
Chem Commun (Camb) ; 57(40): 4926-4929, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33870978

RESUMO

An automated continuous flow reactor system equipped with inline analysis, was developed and applied in the self-optimisation of a nanoparticle catalysed reaction. The system was used to optimise the experimental conditions of a gold nanoparticle catalysed 4-nitrophenol reduction reaction, towards maximum conversion in under 2.5 hours. The data obtained from this optimisation was then used to generate a kinetic model, allowing us to predict the outcome of the reaction under different conditions. By combining continuous flow nanoparticle synthesis with this approach, the development timeline for these emerging catalysts could be significantly accelerated.

7.
ACS Appl Mater Interfaces ; 11(12): 11961-11969, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30817120

RESUMO

Noncovalent, dye-mediated interactions between organo-montmorillonites ("organoclays") and a chitosan-based polyelectrolyte are exploited for highly effective and fast removal of different, industrially important anionic dyes (single-azo, double-azo, and anthraquinone) from aqueous solutions. The addition of only 10 wt % of the polyelectrolyte to conventional organoclay results in a 100% increase in absolute dye uptake capacity, an acceleration of dye uptake kinetics by up to 500%, and the flocculation of large, easily separable sorbent aggregates. These substantial improvements in adsorption performance are driven by the mediating effect of the anionic dyes (acting as the electrostatic mediator between the positively charged polyelectrolyte chains and organoclays), enabling the formation of true hybrid sorbent structures without the need for covalent cross-linking chemistry. The dye-mediated sorption and hybrid formation mechanism is further evidenced by structural and chemical characterization of the hybrid sorbents (small-angle X-ray diffraction and IR mapping) as well as by analysis of dye sorption kinetics according to the intraparticle diffusion model. Importantly, the organoclay/polyelectrolyte hybrid system provides a highly interesting adsorbent for the treatment of dye mixtures. Our study shows that structurally different anionic dyes localize at different sites within the hybrid structure (organoclay intergallery spaces vs polyelectrolyte/organoclay interface), enabling the simultaneous adsorption of different dyes with high efficiency. Consequently, the total uptake capacity for dye mixtures was 50% larger than that of individual dyes, demonstrating the enormous potential of the hybrids for industrial wastewater purification, where dye mixtures are ubiquitous.

8.
Chem Sci ; 8(10): 7203-7210, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29147546

RESUMO

A mechanistic investigation of Ullmann-Goldberg reactions using soluble and partially soluble bases led to the identification of various pathways for catalyst deactivation through (i) product inhibition with amine products, (ii) by-product inhibition with inorganic halide salts, and (iii) ligand exchange by soluble carboxylate bases. The reactions using partially soluble inorganic bases showed variable induction periods, which are responsible for the reproducibility issues in these reactions. Surprisingly, more finely milled Cs2CO3 resulted in a longer induction period due to the higher concentration of the deprotonated amine/amide, leading to suppressed catalytic activity. These results have significant implications on future ligand development for the Ullmann-Goldberg reaction and on the solid form of the inorganic base as an important variable with mechanistic ramifications in many catalytic reactions.

9.
ACS Appl Mater Interfaces ; 9(31): 26383-26391, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28719751

RESUMO

The structural evolution of cost-effective organo-clays (montmorillonite modified with different loadings of CTAB (cetyltrimethylammonium bromide)) is investigated and linked to the adsorption uptake and mechanism of an important industrial dye (hydrolyzed Remazol Black B). Key organo-clay characteristics, such as the intergallery spacing and the average number of well-stacked layers per clay stack, are determined by low-angle X-ray diffraction, while differential thermogravimetric analysis is used to differentiate between surface-bound and intercalated CTAB. Insights into the dye adsorption mechanism are gained through the study of the adsorption kinetics and through the characterization of the organo-clay structure and surface charge after dye adsorption. It is shown that efficient adsorption of anionic industrial dyes is driven by three key parameters: (i) sufficiently large intergallery spacing to enable accommodation of the relatively large dye molecules, (ii) crystalline disorder in the stacking direction of the clay platelets to facilitate dye access, (iii) and positive surface charge to promote interaction with the anionic dyes. Specifically, it is shown that, at low modifier loadings (0.5 cation exchange capacity (0.5CEC)), CTAB molecules exclusively intercalate as a monolayer into the clay intergallery spaces, while, with increasing modifier loadings, the CTAB molecules adopt a bilayer arrangement and adsorb onto the exterior clay surface. Bilayer intercalation results in sufficiently large expansion of the intergallery spaces and significant disordering along the (001) stacking direction to enable high and relatively fast dye uptake via intraparticle diffusion. Poor and slow dye uptake is observed for the organo-clays with a monolayer structure, suggesting relatively inefficient dye adsorption at the clay edges. The optimized bilayer organo-clays (montmorillonite modified with 3CEC of CTAB) also show enhanced adsorption efficiencies for other important industrial dyes, highlighting the importance of structural control in organo-clays while also showing the adsorbents' great potential for use in industry where dye mixtures are encountered.

10.
Nanoscale ; 8(18): 9727-35, 2016 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-27113455

RESUMO

Anatase titania nanoplatelets with predominantly exposed {001} facets have been reported to have enhanced catalytic properties in comparison with bulk anatase. To understand their unusual behaviour, it is essential to fully characterize their electronic and optical properties at the nanometer scale. One way of assessing these fundamental properties is to study the dielectric function. Valence electron energy-loss spectroscopy (EELS) performed using a scanning transmission electron microscope (STEM) is the only analytical method that can probe the complex dielectric function with both high energy (<100 meV) and high spatial (<1 nm) resolution. By correlating experimental STEM-EELS data with simulations based on semi-classical dielectric theory, the dielectric response of thin (<5 nm) anatase nanoplatelets was found to be largely dominated by characteristic (optical) surface modes, which are linked to surface plasmon modes of anatase. For platelets less than 10 nm thick, the frequency of these optical modes varies according to their thickness. This unique optical behaviour prompts the enhancement of light absorption in the ultraviolet regime. Finally, the effect of finite size on the dielectric signal is gradually lost by stacking consistently two or more platelets in a specific crystal orientation, and eventually suppressed for large stacks of platelets.

11.
Sci Rep ; 6: 20053, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26843366

RESUMO

Controlling crystal nucleation is a crucial step in obtaining high quality protein crystals for structure determination by X-ray crystallography. Carbon nanomaterials (CNMs) including carbon nanotubes, graphene oxide, and carbon black provide a range of surface topographies, porosities and length scales; functionalisation with two different approaches, gas phase radical grafting and liquid phase reductive grafting, provide routes to a range of oligomer functionalised products. These grafted materials, combined with a range of controls, were used in a large-scale assessment of the effectiveness for protein crystal nucleation of 20 different carbon nanomaterials on five proteins. This study has allowed a direct comparison of the key characteristics of carbon-based nucleants: appropriate surface chemistry, porosity and/or roughness are required. The most effective solid system tested in this study, carbon black nanoparticles functionalised with poly(ethylene glycol) methyl ether of mean molecular weight 5000, provides a novel highly effective nucleant, that was able to induce crystal nucleation of four out of the five proteins tested at metastable conditions.


Assuntos
Grafite/química , Nanotubos de Carbono/química , Proteínas/química , Fuligem/química , Catalase/química , Cristalização , Microscopia Eletrônica de Transmissão , Muramidase/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Oxirredução , Porosidade , Propriedades de Superfície , Tripsina/química
12.
Chem Commun (Camb) ; 52(9): 1934-7, 2016 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-26679693

RESUMO

Gold nanoparticles (AuNPs) can be evenly deposited on single-walled carbon nanotubes (SWCNTs) via the reduction of the highly stable complex, chloro(triphenylphosphine) gold(I), with SWCNT anions ('nanotubides'). This methodology highlights the unusual chemistry of nanotubides and provides a blueprint for the generation of many other hybrid nanomaterials.


Assuntos
Ouro/química , Nanopartículas Metálicas , Nanotubos de Carbono , Ânions , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica
13.
Chem Sci ; 7(4): 2916-2923, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30090285

RESUMO

A range of carbon nanomaterials, with varying dimensionality, were dispersed by a non-damaging and versatile chemical reduction route, and subsequently grafted by reaction with methoxy polyethylene glycol (mPEG) monobromides. The use of carbon nanomaterials with different geometries provides both a systematic comparison of surface modification chemistry and the opportunity to study factors affecting specific applications. Multi-walled carbon nanotubes, single-walled carbon nanotubes, graphite nanoplatelets, exfoliated few layer graphite and carbon black were functionalized with mPEG-Br, yielding grafting ratios relative to the nanocarbon framework between ca. 7 and 135 wt%; the products were characterised by Raman spectroscopy, TGA-MS, and electron microscopy. The functionalized materials were tested as nucleants by subjecting them to rigorous protein crystallization studies. Sparsely functionalized flat sheet geometries proved exceptionally effective at inducing crystallization of six proteins. This new class of nucleant, based on PEG grafted graphene-related materials, can be widely applied to promote the growth of 3D crystals suitable for X-ray crystallography. The association of the protein ferritin with functionalized exfoliated few layer graphite was directly visualized by transmission electron microscopy, illustrating the formation of ordered clusters of protein molecules critical to successful nucleation.

14.
ACS Appl Mater Interfaces ; 7(48): 26783-91, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26562352

RESUMO

The bricks and mortar in the classic structure of nacre have characteristic geometry, aspect ratios and relative proportions; these key parameters can be retained while scaling down the absolute length scale by more than 1 order of magnitude. The results shed light on fundamental scaling behavior and provide new opportunities for high performance, yet ductile, lightweight nanocomposites. Reproducing the toughening mechanisms of nacre at smaller length scales allows a greater volume of interface per unit volume while simultaneously increasing the intrinsic properties of the inorganic constituents. Layer-by-layer (LbL) assembly of poly(sodium 4-styrenesulfonate) (PSS) polyelectrolyte and well-defined [Mg2Al(OH)6]CO3.nH2O layered double hydroxide (LDH) platelets produces a dense, oriented, high inorganic content (∼90 wt %) nanostructure resembling natural nacre, but at a shorter length scale. The smaller building blocks enable the (self-) assembly of a higher quality nanostructure than conventional mimics, leading to improved mechanical properties, matching those of natural nacre, while allowing for substantial plastic deformation. Both strain hardening and crack deflection mechanisms were observed in situ by scanning electron microscopy (SEM) during nanoindentation. The best properties emerge from an ordered nanostructure, generated using regular platelets, with narrow size dispersion.

15.
Faraday Discuss ; 172: 311-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25427072

RESUMO

Chemical charging of single-walled carbon nanotubes (SWCNTs) and graphenes to generate soluble salts shows great promise as a processing route for electronic applications, but raises fundamental questions. The reduction potentials of highly-charged nanocarbon polyelectrolyte ions were investigated by considering their chemical reactivity towards metal salts/complexes in forming metal nanoparticles. The redox activity, degree of functionalisation and charge utilisation were quantified via the relative metal nanoparticle content, established using thermogravimetric analysis (TGA), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and X-ray photoelectron spectroscopy (XPS). The fundamental relationship between the intrinsic nanocarbon electronic density of states and Coulombic effects during charging is highlighted as an important area for future research.

16.
Faraday Discuss ; 173: 273-85, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25254653

RESUMO

Functionalised carbon nanomaterials (CNMs), with an undamaged carbon framework and controlled physiochemical properties, are desirable for a wide range of scientific studies and commercial applications. The use of a thermochemical grafting approach provides a versatile means to functionalise both multi-walled carbon nanotubes (MWCNTs) and carbon black (CB) nanoparticles without altering their inherent structures. The functionalisation process was investigated by employing various types of grafting monomers; to improve water solubility, reagents were chosen that introduced an ionic character either intrinsically or after further chemical reactions. The degree of grafting for both MWCNTs and CB ranged from 3-27 wt%, as established by thermal gravimetric analysis (TGA). Raman spectroscopy confirmed that the structural framework of the MWCNTs was unaffected by the thermochemical treatment. The effectiveness of the surface modification was demonstrated by significantly improved dispersibility and stability in water, and further quantified by zeta-potential analysis. The concentration of stable, individualised and grafted MWCNTs in water ranged from ∼30 to 80 µg mL(-1) after centrifugation at 10 000 g for 15 min, whereas functionalised CB in water showed improved dispersibility up to ∼460 µg mL(-1). The successful preparation of structurally identical but differently functionalised nanoparticle panels, with high water compatibility and minimal framework damage, is useful for controlled experiments. For example, they can be used to explore the relationship between toxicological effects and specific physiochemical properties, such as surface charge and geometry.


Assuntos
Metacrilatos/química , Metilaminas/química , Nanotubos de Carbono/química , Propilenoglicóis/química , Técnicas Eletroquímicas , Temperatura Alta , Análise Espectral Raman , Eletricidade Estática , Propriedades de Superfície , Água/química
17.
Biomaterials ; 35(17): 4729-38, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24631251

RESUMO

The use of a thermochemical grafting approach provides a versatile means to functionalise as-synthesised, bulk multi-walled carbon nanotubes (MWNTs) without altering their inherent structure. The associated retention of properties is desirable for a wide range of commercial applications, including for drug delivery and medical purposes; it is also pertinent to studies of intrinsic toxicology. A systematic series of water-compatible MWNTs, with diameter around 12 nm have been prepared, to provide structurally-equivalent samples predominantly stabilised by anionic, cationic, or non-ionic groups. The surface charge of MWNTs was controlled by varying the grafting reagents and subsequent post-functionalisation modifications. The degree of grafting was established by thermal analysis (TGA). High resolution transmission electron microscope (HRTEM) and Raman measurements confirmed that the structural framework of the MWNTs was unaffected by the thermochemical treatment, in contrast to a conventional acid-oxidised control which was severely damaged. The effectiveness of the surface modification was demonstrated by significantly improved solubility and stability in both water and cell culture medium, and further quantified by zeta-potential analysis. The grafted MWNTs exhibited relatively low bioreactivity on transformed human alveolar epithelial type 1-like cells (TT1) following 24 h exposure as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and lactate dehydrogenase release (LDH) assays. The exposure of TT1 cells to MWNTs suppressed the release of the inflammatory mediators, interleukin 6 (IL-6) and interleukin 8 (IL-8). TEM cell uptake studies indicated efficient cellular entry of MWNTs into TT1 cells, via a range of mechanisms. Cationic MWNTs showed a more substantial interaction with TT1 cell membranes than anionic MWNTs, demonstrating a surface charge effect on cell uptake.


Assuntos
Materiais Biocompatíveis/química , Nanotubos de Carbono/química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Endocitose , Humanos , Íons/química , Nanotubos de Carbono/análise , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/ultraestrutura , Solubilidade , Eletricidade Estática , Propriedades de Superfície , Água/química
18.
ACS Nano ; 6(4): 3468-80, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22394330

RESUMO

We have studied the dispersion and exfoliation of four inorganic layered compounds, WS(2), MoS(2), MoSe(2), and MoTe(2), in a range of organic solvents. The aim was to explore the relationship between the chemical structure of the exfoliated nanosheets and their dispersibility. Sonication of the layered compounds in solvents generally gave few-layer nanosheets with lateral dimensions of a few hundred nanometers. However, the dispersed concentration varied greatly from solvent to solvent. For all four materials, the concentration peaked for solvents with surface energy close to 70 mJ/m(2), implying that all four have surface energy close to this value. Inverse gas chromatography measurements showed MoS(2) and MoSe(2) to have surface energies of ∼75 mJ/m(2), in good agreement with dispersibility measurements. However, this method suggested MoTe(2) to have a considerably larger surface energy (∼120 mJ/m(2)). While surface-energy-based solubility parameters are perhaps more intuitive for two-dimensional materials, Hansen solubility parameters are probably more useful. Our analysis shows the dispersed concentration of all four layered materials to show well-defined peaks when plotted as a function of Hansen's dispersive, polar, and H-bonding solubility parameters. This suggests that we can associate Hansen solubility parameters of δ(D) ∼ 18 MPa(1/2), δ(P) ∼ 8.5 MPa(1/2), and δ(H) ∼ 7 MPa(1/2) with all four types of layered material. Knowledge of these properties allows the estimation of the Flory-Huggins parameter, χ, for each combination of nanosheet and solvent. We found that the dispersed concentration of each material falls exponentially with χ as predicted by solution thermodynamics. This work shows that solution thermodynamics and specifically solubility parameter analysis can be used as a framework to understand the dispersion of two-dimensional materials. Finally, we note that in good solvents, such as cyclohexylpyrrolidone, the dispersions are temporally stable with >90% of material remaining dispersed after 100 h.

19.
Langmuir ; 25(14): 8340-8, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19492786

RESUMO

The surface properties of chemical vapor deposition (CVD)-grown, multiwalled carbon nanotubes (CNTs) have been studied using inverse gas chromatography (IGC). By adapting known IGC methodologies to these challenging materials, the surface character of a broad range of CNT materials can be reliably compared and quantified in terms of dispersive and specific surface energies, electron acceptor and donor numbers, and adsorption capacities. The effect of CNT surface modification by high temperature annealing, thermal oxidation, and grafting of methyl methacrylate was explored. The IGC surface characterization of these materials was consistent with results from other surface-sensitive analytical techniques, including X-ray photoelectron spectroscopy (XPS), titration, and electron microscopy, confirming the validity and sensitivity of our approaches. The same IGC methodologies were successfully applied to characterize three as-received CNT materials which differed significantly in their specific surface areas and functional surface group concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...