Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroendocrinol ; 23(11): 1066-78, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21824206

RESUMO

Stress can cause pregnancy failure but it is unclear how the mother's neuroendocrine system responds to stress to impair mechanisms establishing implantation. We analysed stress-evoked hypothalamic-pituitary-adrenal (HPA) axis responses in early pregnant mice. HPA axis secretory responses to immune stress in early-mid pregnancy were strong and similar to that in virgins, although activation of hypothalamic vasopressin neurones, rather than corticotrophin-releasing hormone neurones, may be more important in the stress response in pregnancy. The site and mode of detrimental glucocorticoid action in pregnancy is not established. Because circulating prolactin is important for progesterone secretion and pregnancy establishment, we also hypothesised that stress negatively impacts on prolactin and its neuroendocrine control systems in early pregnant mice. Basal prolactin secretion was profoundly inhibited by either immune or fasting stress in early pregnancy. Prolactin release is inhibited by tonic dopamine release from tuberoinfundibular (TIDA) neurones. However, immune stress did not increase TIDA neurone activity in the median eminence in pregnant mice [measured by 3,4-dihydroxyphenylacetic acid (DOPAC) content and the DOPAC:dopamine ratio]. By contrast, both immune stress and fasting caused weak induction of Fos in TIDA neurones. However, Fos induction does not always reflect dopamine secretion. Taken together, the data suggest that the stress-evoked profound reduction in prolactin secretion does not involve substantially increased dopamine activity as anticipated. In pregnancy, there was also attenuated recruitment of parvocellular paraventricular nucleus neurones and increased activation of brainstem noradrenergic nuclei after immune stress, indicating that other mechanisms may be involved in the suppression of prolactin secretion. In summary, low prolactin and increased circulating glucocorticoids together may partly explain how a mother's endocrine system mediates stress-induced pregnancy failure.


Assuntos
Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipófise-Suprarrenal/patologia , Prolactina/metabolismo , Estresse Fisiológico , Animais , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal/metabolismo , Gravidez
2.
J Neuroendocrinol ; 22(6): 585-92, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20236227

RESUMO

Within the hypothalamic arcuate nucleus, two neuronal subpopulations play particularly important roles in energy balance; neurones expressing neuropeptide Y (NPY), agouti-related peptide (AgRP) and GABA are orexigenic, whereas neurones expressing pro-opiomelanocortin and CART are anorexigenic. The pivotal role of these neuropeptides in energy homeostasis is well-known, although GABA may also be an important signal because targeted knockout of the GABA transporter in NPY/AgRP/GABA neurones results in a lean, obesity-resistant phenotype. In the present study, we describe an in vitro model of K(+)-evoked GABA release from the hypothalamus and determine the effects of cannabinoid receptor activation. K(+)-evoked GABA release was sensitive to leptin, insulin and PYY(3-36), indicating that GABA was released by arcuate NPY/AgRP/GABA neurones. In the presence of tetrodotoxin (TTX), the cannabinoid CB1 receptor agonist WIN 55,212-2 inhibited K(+)-evoked GABA release. This was prevented by the CB1 receptor inverse agonist rimonabant. Rimonabant had no effect when applied alone. In the absence of TTX, however, the opposite effects were observed: WIN 55,212-2 had no effect while rimonabant inhibited GABA release. This indicates that GABA release can involve an indirect, TTX-sensitive mechanism. The most parsimonious explanation for the inhibition of GABA release by a CB receptor inverse agonist is via the disinhibition of an cannabinoid-sensitive inhibitory input onto GABAergic neurones. One local source of an inhibitory neurotransmitter is the opioidergic arcuate neurones. In our in vitro model, K(+)-evoked GABA release was inhibited by the endogenous opioid peptide beta-endorphin in a naloxone-sensitive manner. The inhibitory effect of rimonabant was also prevented by naloxone and a kappa-opioid receptor selective antagonist, suggesting that GABA release from arcuate NPY/AgRP/GABA neurones can be inhibited by endogenous opioid peptides, and that the release of opioid peptides is sensitive to cannabinoids.


Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Canabinoides/farmacologia , Ácido gama-Aminobutírico/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Cromatografia Líquida de Alta Pressão , Masculino , Piperidinas/farmacologia , Potássio/metabolismo , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Rimonabanto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...