Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 358: 142160, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685330

RESUMO

Recent research has found biochar to be a cost-effective adsorbent for removal of perfluoroalkyl substances in water. To promote cleaner production and sustainable waste management, this study explored the potential to produce activated biochars by co-pyrolyzing sawdust with iron-rich biosolids and polyaluminum sludge. The maximum capacity to adsorb perfluorooctanesulfonic acid (PFOS) reached 27.2 mg g-1 with biosolids-activated biochar and 19.2 mg g-1 with aluminum sludge-activated biochar, compared to 6.2 mg g-1 with sawdust biochar. The increased adsorption capacities were attributed to electrostatic interactions between the anionic PFOS and metal functionalities on the biochar surface. In contrast, hydrophobic interaction was the dominant adsorption mechanism of sawdust biochar. The presence of dissolved organic matter at 5-50 mg L-1 was found to inhibit adsorption of PFOS in water, while pH as low as 3.0 and sodium chloride concentrations up to 100 mM enhanced removal of PFOS by all the three adsorbents. In batch adsorption tests at environmentally relevant PFOS dosages and adsorbent dosage of 0.25 g L-1, the biosolids-sawdust biochar and Al sludge-sawdust biochar removed 71.4% and 66.9% of PFOS from drinking water and 77.9% and 87.9% of PFOS from filtrate of sludge digestate, respectively. The biosolids-sawdust biochar additionally removed Fe, although the Al sludge-sawdust biochar released Al into the alkaline drinking water and filtrate. Overall, this study proved co-pyrolyzing sawdust and Fe-rich biosolids to be an effective approach to activate sawdust biochar for enhanced removal of PFOS while recycling wastewater treatment residuals and sawdust.


Assuntos
Ácidos Alcanossulfônicos , Carvão Vegetal , Fluorocarbonos , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água , Fluorocarbonos/química , Ácidos Alcanossulfônicos/química , Carvão Vegetal/química , Adsorção , Poluentes Químicos da Água/química , Águas Residuárias/química , Purificação da Água/métodos , Madeira/química , Eliminação de Resíduos Líquidos/métodos
2.
Environ Technol ; : 1-42, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215094

RESUMO

AbstractBiochar derived from lignocellulosic biomass has been used as a low-cost adsorbent in wastewater treatment applications. Due to its rich porous structure and good electrical conductivity, biochar can be used as a cost-effective electrode material for capacitive deionization of water. In this work, willow biochar was prepared through carbonization of shrub willow chips, activated with potassium hydroxide, and loaded with manganese dioxide (WBC-K-MnO2 nanocomposite). The prepared materials were used to electrochemically adsorb Pb2+ from aqueous solutions. Under the applied potential of 1.0 V, the WBC-K-MnO2 electrode exhibited a high Pb2+ specific electrosorption capacity (23.3 mg/g) as compared to raw willow biochar (4.0 mg/g) and activated willow biochar (9.2 mg/g). KOH activation followed by MnO2 loading on the surface of raw biochar enhanced its BET surface area (178.7 m2/g) and mesoporous volume ratio (42.1%). Moreover, the WBC-K-MnO2 nanocomposite exhibited the highest specific capacitance value of 234.3 F/g at a scan rate of 5 mV/s. The electrosorption isotherms and kinetic data were well explained by the Freundlich and pseudo-second order models, respectively. The WBC-K-MnO2 electrode demonstrated excellent reusability with a Pb2+ electrosorption efficiency of 76.3% after 15 cycles. Thus, the WBC-K-MnO2 nanocomposite can serve as a promising candidate for capacitive deionization of heavy metal contaminated water.

3.
J Environ Sci (China) ; 99: 267-273, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33183704

RESUMO

Generation of hydroxyl radicals (⋅OH) is the basis of advanced oxidation process (AOP). This study investigates the catalytic activity of microporous carbonaceous structure for in-situ generation of ⋅OH radicals. Biochar (BC) was selected as a representative of carbon materials with a graphitic structure. The work aims at assessing the impact of BC structure on the activation of H2O2, the reinforcement of the persistent free radicals (PFRs) in BC using heavy metal complexes, and the subsequent AOP. Accordingly, three different biochars (raw, chemically- and physiochemically-activated BCs) were used for adsorption of two metal ions (nickel and lead) and the degradation of phenol (100 mg/L) through AOP. The results demonstrated four outcomes: (1) The structure of carbon material, the identity and the quantity of the metal complexes in the structure play the key roles in the AOP process. (2) the quantity of PFRs on BC significantly increased (by 200%) with structural activation and metal loading. (3) Though the Pb-loaded BC contained a larger quantity of PFRs, Ni-loaded BC exhibited a higher catalytic activity. (4) The degradation efficiency values for phenol by modified biochar in the presence of H2O2 was 80.3%, while the removal efficiency was found to be 17% and 22% in the two control tests, with H2O2 (no BC) and with BC (no H2O2), respectively. Overall, the work proposes a new approach for dual applications of carbonaceous structures; adsorption of metal ions and treatment of organic contaminants through in-situ chemical oxidation (ISCO).


Assuntos
Peróxido de Hidrogênio , Metais Pesados , Adsorção , Carbono , Carvão Vegetal , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...