Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Cell Biol ; 34(5): 350-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25607779

RESUMO

Mutations in sarcomeric genes are the leading cause for cardiomyopathies. However, not many genetic studies have been carried out on Indian cardiomyopathy patients. We performed sequence analyses of a thin filament sarcomeric gene, α-tropomyosin (TPM1), in 101 hypertrophic cardiomyopathy (HCM) patients and 147 dilated cardiomyopathy (DCM) patients against 207 ethnically matched healthy controls, revealing 13 single nucleotide polymorphisms (SNPs). Of these, one mutant, S215L, was identified in two unrelated HCM cases-patient #1, aged 44, and patient #2, aged 65-and was cosegregating with disease in these families as an autosomal dominant trait. In contrast, S215L was completely absent in 147 DCM and 207 controls. Patient #1 showed a more severe disease phenotype, with poor prognosis and a family history of sudden cardiac death, than patient #2. Therefore, these two patients and the family members positive for S215L were further screened for variations in MYH7, MYBPC3, TNNT2, TNNI3, MYL2, MYL3, and ACTC. Interestingly, two novel thick filaments, D896N (homozygous) and I524K (heterozygous) mutations, in the MYH7 gene were identified exclusively in patient #1 and his family members. Thus, we strongly suggest that the coexistence of these digenic mutations is rare, but leads to severe hypertrophy in a South Indian familial hypertrophic cardiomyopathy (FHCM).


Assuntos
Miosinas Cardíacas/genética , Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica/genética , Mutação/genética , Cadeias Pesadas de Miosina/genética , Tropomiosina/genética , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Pré-Escolar , Citoesqueleto , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Prognóstico , Sarcômeros/genética , Adulto Jovem
2.
Bioinformation ; 8(23): 1139-46, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23275710

RESUMO

The sodium "channelopathies" are the first among the ion channel diseases identified and have attracted widespread clinical and scientific interests. Human voltage gated sodium channels are sites of action of several antiarrhythmic drugs, local anesthetics and related antiepileptic drugs. The present study aims to optimize the activity of Disopyramide, by modification in its structures which may improve the drug action by reducing its side effects. Herein, we have selected Human voltage-gated sodium channel protein type 5 as a potent molecular target. Nearly eighty analogs of Disopyramide are designed and optimized. Thirty are selected for energy minimization using Discovery studio and the LigPrep 2.5. Prior to docking, the active sites of all the proteins are identified. The processing, optimization and minimization of all the proteins is done in Protein preparation wizard. The docking study is performed using the GLIDE. Finally top five ranked lead molecules with better dock scores are identified as having strong binding affinity to 2KAV protein than Disopyramide based on XP G scores. These five leads are further docked with other similar voltage gated sodium channel proteins (PDB IDs: 2KBI, 4DCK, 2L53 and 4DJC) and the best scoring analog with each protein is identified. Drug likeliness and comparative bioactivity analysis for all the analogs is done using QikProp 3.4. Results have shown that the top five lead molecules would have the potential to act as better drugs as compared to Disopyramide and would be of interest as promising starting point for designing compounds against various Sodium channelopathies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...