Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Omega ; 5(31): 19667-19681, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803062

RESUMO

The growing awareness to advance new ways to transform renewable materials for producing clean fuels, under technical and sustainable viability, is evident. In this regard, hydrogen arises as one of the cleanest and energetic biofuels in the market. This work addresses the modeling and evaluation of a biomass gasification topology employing process simulation along with an environmental and inherent safety analysis. The presented pathway considered two renewable raw materials (cassava and rice waste) based on their vast availability in north Colombia regions. We employed Aspen Plus process simulation software to model the process, setting biomasses (and ash content) as nonconventional solids in the software and inclusion of FORTRAN subroutines for handling solid properties. Otherwise, the environmental evaluation was performed applying the waste reduction algorithm (WAR). At the same time, safety assessment involves a comprehensive approach based on the inherent safety index (ISI) and the process route index (PRI) methods. Data generated from the implementation of rigorous process simulation of biomass gasification allowed us to determine the needed aspect for performing process analysis methodologies. Results revealed that this topology generates a total flow of 3944.51 kg/h with more than 97% vol of H2, from the sustainable use of 19,243 kg/h of cassava waste and 15,000 kg/h of rice straw. From the environmental viewpoint, the process showed moderately to a high overall rate of potential environmental impacts (PEIs), with a higher contribution from process sources than energy sources. It indicates that most of the generated impacts would come from self-operation than from the energy supply generation. In the case of process safety, the topology obtained an ISI score of 35, which represents that modeled gasification would operate below 50% of the expected neutral standard for a physical-chemical process. Complementing the safety evaluation, the obtained PRI suggests that compared to other processes, the analyzed topology shows relatively adequate performance considering the nature of this type of process.

3.
ACS Omega ; 5(30): 18710-18730, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32775873

RESUMO

The incorporation of sustainability aspects into the design of chemical processes has been increasing since the last century. Hence, there are several proposed methodologies and indicators to assess chemical facilities through process analysis techniques. A comprehensive assessment involving economic, environmental, safety, and exergy parameters of two alternatives for butanol production from Manihot esculenta Crantz (cassava waste) is presented in this study. The modeling of process topologies involved using Aspen Plus software. Topology 1 generated a product flow rate of 316,477 t/y of butanol, while this value was 367,037 t/y for topology 2. Both processes used a feed flow of 3,131,439 t/y of biomass. This study used seven technical indicators to evaluate both alternatives, which include the return of investment, discounted payback period, global warming potential, renewability material index, inherent safety index, exergy efficiency, and exergy of waste ratio. Otherwise, this study implemented an aggregate index to assess overall sustainability performance. The results revealed that topology 2 presented higher economic normalized scores for evaluated indicators, but the most crucial difference between these designs came from the safety and exergetic indexes. Topology 1 and topology 2 obtained weighted scores equaling to 0.48 and 0.53; therefore, this study found that the second alternative gives a more sustainable design for butanol production under evaluated conditions.

4.
ACS Omega ; 5(16): 9259-9275, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32363277

RESUMO

Nowadays, green-chemistry principles offer an approach that fits to ensure chemical process sustainability by the use of low-cost renewable raw materials, waste prevention, inherent safer designs, among others. Based on this motivation, this study presents a novel methodology for sustainable process design that comprises the synthesis of a multifeedstock optimal biorefinery under simultaneous optimization of economic and environmental targets and further sustainability evaluation using the sustainability weighted return on investment metric (SWROIM). The first step of the proposed method is the formulation of an optimization model to generate the most suitable process alternatives. The model took into account various biomasses as available raw materials for production of ethanol, butanol, succinic acid, among others. Process technologies such as fermentation, anaerobic digestion, gasification, among others, were considered for biorefinery design. Once the model synthesizes the optimal biorefinery, we used environmental, safety, economic, and energy analyses to assess the process, which is a case study for north Colombia. Process simulation generated the data needed (extended mass and energy balances, property estimation, and modeling of downstream) to develop the process analysis stage via the Aspen Plus software. Results for the environmental and economic analyses showed that the assumption considered to solve the optimization problem was adequate, yielding promising environmental and economic outcomes. Finally, the overall sustainability evaluation showed a SWROIM of 27.29%, indicating that the case study showed higher weighted performance compared to the return on investment (ROI) metric of 14.33%.

5.
ACS Omega ; 4(27): 22302-22312, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31909313

RESUMO

These days, there is a need to develop novel and emerging processing pathways that permit production of value-added substances and fuels considering sustainability aspects. In this sense, levulinic acid (LA) is one of the most promising biorefinery products. This paper presents environmental and safety assessments of LA production via acid-catalyzed dehydration (ACD) of biomass. The process was modeled by using Aspen Plus process simulation software based on a capacity of 132 000 tons per annum of banana rachis (main raw material). Likewise, environmental and safety assessments were developed. Parameters such as heats of reaction, explosivity, toxicity of substances, and operational conditions along with extended mass and energy balances were used to perform safety and environmental analyses. In this regard, the modeled topology showed an inherent safety index (ISI) score of 24 with an equal contribution of 12 points for both chemical inherent safety index (CIS) and process inherent safety index (PIS). ACD showed a good safety performance, with moderate concerns related to the handling of formic acid. Moreover, the waste reduction algorithm (WAR) was used to assess environmental performance and estimate potential environmental impacts (PEIs) of the simulated topology. It was performed considering four case studies to determine the influence of mass streams (case 1), product streams (case 2), energy streams (case 3), and simultaneous products and energy contribution (case 4). This analysis showed that for this process, the total inletting flow of impacts that enter was less than the amount of these that leave the system according to a generation rate of the PEI for case 1 (-1.89 × 102 PEI/h) and case 3 (-1.83 × 102 PEI/h). From the environmental viewpoint, the major concern is associated with the photochemical oxidation potential category because of the handling of volatile organic compounds through the process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...