Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903803

RESUMO

Polymer flooding is one of the enhanced oil recovery (EOR) methods that increase the macroscopic efficiency of the flooding process and enhanced crude oil recovery. In this study, the effect of silica nanoparticles (NP-SiO2) in xanthan gum (XG) solutions was investigated through the analysis of efficiency in core flooding tests. First, the viscosity profiles of two polymer solutions, XG biopolymer and synthetic hydrolyzed polyacrylamide (HPAM) polymer, were characterized individually through rheological measurements, with and without salt (NaCl). Both polymer solutions were found suitable for oil recovery at limited temperatures and salinities. Then, nanofluids composed of XG and dispersed NP-SiO2 were studied through rheological tests. The addition of nanoparticles was shown to produce a slight effect on the viscosity of the fluids, which was more remarkable over time. Interfacial tension tests were measured in water-mineral oil systems, without finding an effect on the interfacial properties with the addition of polymer or nanoparticles in the aqueous phase. Finally, three core flooding experiments were conducted using sandstone core plugs and mineral oil. The polymers solutions (XG and HPAM) with 3% NaCl recovered 6.6% and 7.5% of the residual oil from the core, respectively. In contrast, the nanofluid formulation recovered about 13% of the residual oil, which was almost double that of the original XG solution. The nanofluid was therefore more effective at boosting oil recovery in the sandstone core.

2.
Nanomaterials (Basel) ; 12(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35683761

RESUMO

The effect of silica nanoparticles (NP-SiO2) in xanthan gum (XG) solutions was investigated through the analysis of viscosity profiles. First, hydrocolloid XG solutions and hydrophilic NP-SiO2 suspensions were characterized individually through rheological measurements, with and without salt (NaCl). Then, nanofluids composed of XG and NP-SiO2 dispersed in water and brine were studied through two different aging tests. The addition of nanoparticles was shown to produce a slight effect on the viscosity of the fresh fluids (initial time), while a more remarkable effect was observed over time. In particular, it appears that the presence of NP-SiO2 stabilizes the polymer solution by maintaining its viscosity level in time, due to a delay in the movement of the molecule. Finally, characterization techniques such as confocal microscopy, capillary rheometry, and Zeta potential were implemented to analyze the XG/NP-SiO2 interaction. Intrinsic viscosity and relative viscosity were calculated to understand the molecular interactions. The presence of NP-SiO2 increases the hydrodynamic radius of the polymer, indicating attractive forces between these two components. Furthermore, dispersion of the nanoparticles in the polymeric solutions leads to aggregates of an average size smaller than 300 nm with a good colloidal stability due to the electrostatic attraction between XG and NP-SIO2. This study proves the existence of interactions between XG and NP-SiO2 in solution.

3.
Materials (Basel) ; 13(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302415

RESUMO

The incorporation of a recycled concrete aggregate (RCA) as a replacement of natural aggregates (NA) in road construction has been the subject of recent research. This tendency promotes sustainability, but its use depends mainly on the final product's properties, such as chemical stability. This study evaluates the physical and chemical properties of RCAs from two different sources in comparison with the performance of NA. One RCA was obtained from the demolition of a building (recycled concrete aggregate of a building-RCAB) and another RCA from the rehabilitation of a Portland cement concrete pavement (recycled concrete aggregate from a pavement-RCAP). Characterization techniques such as X-ray fluorescence (XRF), X-ray diffraction (XRD), UV spectroscopy, and atomic absorption spectrometry were used to evaluate the RCAs' coarse fractions for chemical potential effects on asphalt mixtures. NA was replaced with RCA at 15%, 30%, and 45% for each size of the coarse fractions (retained 19.0, 12.5, 9.5, and 4.75 sieves in mm). The mineralogical characterization results indicated the presence of quartz (SiO2) and calcite (CaCO3) as the most significant constituents of the aggregates. XFR showed that RCAs have lower levels of CaO and Al2O3 concerning NA. Potential reactions in asphalt mixtures by nitration, sulfonation, amination of organic compounds, and reactions by alkaline activation in the aggregates were discarded due to the minimum concentration of components such as NO2, (-SO3H), (-SO2Cl), and (Na) in the aggregates. Finally, this research concludes that studied RCAs might be used as replacements of coarse aggregate in asphalt mixtures since chemical properties do not affect the overall chemical stability of the asphalt mixture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...