Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 16(9): 843-852, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31471613

RESUMO

Many bioinformatics methods have been proposed for reducing the complexity of large gene or protein networks into relevant subnetworks or modules. Yet, how such methods compare to each other in terms of their ability to identify disease-relevant modules in different types of network remains poorly understood. We launched the 'Disease Module Identification DREAM Challenge', an open competition to comprehensively assess module identification methods across diverse protein-protein interaction, signaling, gene co-expression, homology and cancer-gene networks. Predicted network modules were tested for association with complex traits and diseases using a unique collection of 180 genome-wide association studies. Our robust assessment of 75 module identification methods reveals top-performing algorithms, which recover complementary trait-associated modules. We find that most of these modules correspond to core disease-relevant pathways, which often comprise therapeutic targets. This community challenge establishes biologically interpretable benchmarks, tools and guidelines for molecular network analysis to study human disease biology.


Assuntos
Biologia Computacional/métodos , Doença/genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Modelos Biológicos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Algoritmos , Perfilação da Expressão Gênica , Humanos , Fenótipo , Mapas de Interação de Proteínas
2.
Nat Methods ; 14(1): 61-64, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27892958

RESUMO

Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (InWeb_InBioMap, or InWeb_IM) with severalfold more interactions (>500,000) and better functional biological relevance than comparable resources. We illustrate that InWeb_InBioMap enables functional interpretation of >4,700 cancer genomes and genes involved in autism.


Assuntos
Biologia Computacional/métodos , Interpretação Estatística de Dados , Redes Reguladoras de Genes , Genômica/métodos , Neoplasias/genética , Neoplasias/metabolismo , Mapas de Interação de Proteínas/genética , Bases de Dados de Proteínas , Genoma Humano , Humanos , Interface Usuário-Computador
3.
Cell Syst ; 3(3): 302-316.e4, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27684187

RESUMO

Genome-scale expression studies and comprehensive loss-of-function genetic screens have focused almost exclusively on the highest confidence candidate genes. Here, we describe a strategy for characterizing the lower confidence candidates identified by such approaches. We interrogated 177 genes that we classified as essential for the proliferation of cancer cells exhibiting constitutive ß-catenin activity and integrated data for each of the candidates, derived from orthogonal short hairpin RNA (shRNA) knockdown and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-mediated gene editing knockout screens, to yield 69 validated genes. We then characterized the relationships between sets of these genes using complementary assays: medium-throughput stable isotope labeling by amino acids in cell culture (SILAC)-based mass spectrometry, yielding 3,639 protein-protein interactions, and a CRISPR-mediated pairwise double knockout screen, yielding 375 combinations exhibiting greater- or lesser-than-additive phenotypic effects indicating genetic interactions. These studies identify previously unreported regulators of ß-catenin, define functional networks required for the survival of ß-catenin-active cancers, and provide an experimental strategy that may be applied to define other signaling networks.


Assuntos
Proteômica , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Terapia Genética , Humanos , Neoplasias , RNA Guia de Cinetoplastídeos , RNA Interferente Pequeno , beta Catenina
4.
BMC Proc ; 8(Suppl 2 Proceedings of the 3rd Annual Symposium on Biologica): S5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25237392

RESUMO

BACKGROUND: A complete understanding of the relationship between the amino acid sequence and resulting protein function remains an open problem in the biophysical sciences. Current approaches often rely on diagnosing functionally relevant mutations by determining whether an amino acid frequently occurs at a specific position within the protein family. However, these methods do not account for the biophysical properties and the 3D structure of the protein. We have developed an interactive visualization technique, Mu-8, that provides researchers with a holistic view of the differences of a selected protein with respect to a family of homologous proteins. Mu-8 helps to identify areas of the protein that exhibit: (1) significantly different bio-chemical characteristics, (2) relative conservation in the family, and (3) proximity to other regions that have suspect behavior in the folded protein. METHODS: Our approach quantifies and communicates the difference between a reference protein and its family based on amino acid indices or principal components of amino acid index classes, while accounting for conservation, proximity amongst residues, and overall 3D structure. RESULTS: We demonstrate Mu-8 in a case study with data provided by the 2013 BioVis contest. When comparing the sequence of a dysfunctional protein to its functional family, Mu-8 reveals several candidate regions that may cause function to break down.

5.
Proc Natl Acad Sci U S A ; 111(21): 7741-6, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24821797

RESUMO

A coding polymorphism (Thr300Ala) in the essential autophagy gene, autophagy related 16-like 1 (ATG16L1), confers increased risk for the development of Crohn disease, although the mechanisms by which single disease-associated polymorphisms contribute to pathogenesis have been difficult to dissect given that environmental factors likely influence disease initiation in these patients. Here we introduce a knock-in mouse model expressing the Atg16L1 T300A variant. Consistent with the human polymorphism, T300A knock-in mice do not develop spontaneous intestinal inflammation, but exhibit morphological defects in Paneth and goblet cells. Selective autophagy is reduced in multiple cell types from T300A knock-in mice compared with WT mice. The T300A polymorphism significantly increases caspase 3- and caspase 7-mediated cleavage of Atg16L1, resulting in lower levels of full-length Atg16Ll T300A protein. Moreover, Atg16L1 T300A is associated with decreased antibacterial autophagy and increased IL-1ß production in primary cells and in vivo. Quantitative proteomics for protein interactors of ATG16L1 identified previously unknown nonoverlapping sets of proteins involved in ATG16L1-dependent antibacterial autophagy or IL-1ß production. These findings demonstrate how the T300A polymorphism leads to cell type- and pathway-specific disruptions of selective autophagy and suggest a mechanism by which this polymorphism contributes to disease.


Assuntos
Proteínas de Transporte/genética , Doença de Crohn/imunologia , Celulas de Paneth/patologia , Polimorfismo de Nucleotídeo Único/genética , Infecções por Salmonella/imunologia , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia , Western Blotting , Cromatografia Líquida , Doença de Crohn/genética , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Técnicas de Introdução de Genes , Células Caliciformes/patologia , Camundongos , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...