Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197244

RESUMO

Mechanoreceptors in hearing organs transduce sound-induced mechanical responses into neuronal signals, which are further processed and forwarded to the brain along a chain of neurons in the auditory pathway. Bushcrickets (katydids) have their ears in the front leg tibia, and the first synaptic integration of sound-induced neuronal signals takes place in the primary auditory neuropil of the prothoracic ganglion. By combining intracellular recordings of the receptor activity in the ear, extracellular multichannel array recordings on top of the prothoracic ganglion and hook electrode recordings at the neck connective, we mapped the timing of neuronal responses to tonal sound stimuli along the auditory pathway from the ears towards the brain. The use of the multielectrode array allows the observation of spatio-temporal patterns of neuronal responses within the prothoracic ganglion. By eliminating the sensory input from one ear, we investigated the impact of contralateral projecting interneurons in the prothoracic ganglion and added to previous research on the functional importance of contralateral inhibition for binaural processing. Furthermore, our data analysis demonstrates changes in the signal integration processes at the synaptic level indicated by a long-lasting increase in the local field potential amplitude. We hypothesize that this persistent increase of the local field potential amplitude is important for the processing of complex signals, such as the conspecific song.


Assuntos
Audição , Ortópteros , Animais , Audição/fisiologia , Neurônios/fisiologia , Vias Auditivas/fisiologia , Interneurônios/fisiologia , Estimulação Acústica
2.
J Neurophysiol ; 127(2): 452-462, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020518

RESUMO

Noise-induced hearing deficits are important health problems in the industrialized world. As the underlying physiological dysfunctions are not well understood, research in suitable animal models is urgently needed. Three rodent species (Mongolian gerbil, rat, and mouse) were studied to compare the temporal dynamics of noise-induced hearing loss after identical procedures of noise exposure. Auditory brainstem responses (ABRs) were measured before, during, and up to 8 wk after noise exposure for threshold determination and ABR waveform analysis. Trauma induction with stepwise increasing sound pressure level was interrupted by five interspersed ABR measurements. Comparing short- and long-term dynamics underlying the following noise-induced hearing loss revealed diverging time courses between the three species. Hearing loss occurred early on during noise exposure in all three rodent species at or above trauma frequency. Initial noise level (105 dB SPL) was most effective in rats whereas the delayed level increase to 115 dB SPL affected mice much stronger. Induced temporary threshold shifts in rats and mice were larger in animals with lower pretrauma ABR thresholds. The increase in activity (gain) along the auditory pathway was derived by comparing the amplitudes of short- and long-latency ABR waveform components. Directly after trauma, significant effects were found for rats (decreasing gain) and mice (increasing gain) whereas gerbils revealed high individual variability in gain changes. Taken together, our comparative study revealed pronounced species-specific differences in the development of noise-induced hearing loss and the related processing along the auditory pathway.NEW & NOTEWORTHY We compared deficits after noise trauma in different rodents that are typically used in hearing research (Mongolian gerbil, rat, and mouse). We observed noise-induced threshold changes and alterations in the activity of processing auditory information along the ascending auditory pathway. Our results reveal pronounced differences in the characteristics of trauma-induced damage in these different rodent groups.


Assuntos
Vias Auditivas/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Animais , Limiar Auditivo/fisiologia , Comportamento Animal , Modelos Animais de Doenças , Gerbillinae , Camundongos , Ruído , Ratos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...