Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Forum Infect Dis ; 11(1): ofad568, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38213635

RESUMO

The immunology of human babesiosis is poorly investigated. We present a comprehensive investigation of a 75-year-old man with B-cell deficiency who experienced 3 episodes of babesiosis over a 6-year period. Slowly evolving clinical immunity was observed, as evidenced by milder clinical symptoms and lower peak parasite burden after each subsequent babesiosis episode. The patient exhibited several striking immunologic findings. First, the patient had exceptionally high Babesia microti-specific antibodies despite very few circulating B cells, which predominantly coexpressed CD27 (memory marker) and CD95 (death receptor). Second, we demonstrated the presence of long-lasting NK cells and expansion of T memory stem cells. Third, levels of the IP-10 cytokine directly correlated with parasite burden. These results raise fundamental questions on the priming, maintenance, and location of a B-cell population that produces high antibody levels in the face of severe B-cell deficiency. Our results should invoke interest among researchers to study the immunology and pathogenesis of human babesiosis.

2.
Infect Immun ; 91(10): e0016223, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37728332

RESUMO

Babesia microti, an intraerythrocytic apicomplexan parasite, is the primary causative agent of human babesiosis and an emerging threat to public health in the United States and elsewhere. An effective vaccine against B. microti would reduce disease severity in acute babesiosis patients and shorten the parasitemic period in asymptomatic individuals, thereby minimizing the risk of transfusion-transmitted babesiosis. Here we report on immunogenicity, protective efficacy, and correlates of immunity following immunization with four immunodominant recombinantly produced B. microti antigens-Serine Reactive Antigen 1 (SERA1), Maltese Cross Form Related Protein 1 (MCFRP1), Piroplasm ß-Strand Domain 1 (PißS1), and Babesia microti Alpha Helical Cell Surface Protein 1 (BAHCS1)-delivered subcutaneously in Montanide ISA 51/CpG adjuvant in three doses to BALB/c mice. Following B. microti parasite challenge, BAHCS1 led to the highest reduction in peak parasitemia (67.8%), followed by SERA1 (44.8%) and MCFRP1 (41.9%); PißS1 (27.6%) had minimal protective effect. All four B. microti antigens induced high ELISA total IgG and each isotype; however, antibody levels did not directly correlate with anti-parasitic activity in mice. Increased prechallenge levels of some cell populations including follicular helper T cells (TFH) and memory B cells, along with a set of six cytokines [IL-1α, IL-2, IL-3, IL-6, IL-12(p40), and G-CSF] that belong to both innate and adaptive immune responses, were generally associated with protective immunity. Our results indicate that mechanisms driving recombinant B. microti antigen-induced immunity are complex and multifactorial. We think that BAHCS1 warrants further evaluation in preclinical studies.


Assuntos
Babesia microti , Babesiose , Humanos , Camundongos , Animais , Estados Unidos , Babesia microti/fisiologia , Epitopos Imunodominantes , Citocinas , Imunização
3.
Pathogens ; 10(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34959518

RESUMO

The biology of intraerythrocytic Babesia parasites presents unique challenges for the diagnosis of human babesiosis. Antibody-based assays are highly sensitive but fail to detect early stage Babesia infections prior to seroconversion (window period) and cannot distinguish between an active infection and a previously resolved infection. On the other hand, nucleic acid-based tests (NAT) may lack the sensitivity to detect window cases when parasite burden is below detection limits and asymptomatic low-grade infections. Recent technological advances have improved the sensitivity, specificity and high throughput of NAT and the antibody-based detection of Babesia. Some of these advances include genomics approaches for the identification of novel high-copy-number targets for NAT and immunodominant antigens for superior antigen and antibody-based assays for Babesia. Future advances would also rely on next generation sequencing and CRISPR technology to improve Babesia detection. This review article will discuss the historical perspective and current status of technologies for the detection of Babesia microti, the most common Babesia species causing human babesiosis in the United States, and their implications for early diagnosis of acute babesiosis, blood safety and surveillance studies to monitor areas of expansion and emergence and spread of Babesia species and their genetic variants in the United States and globally.

4.
Front Microbiol ; 12: 697669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539601

RESUMO

More than 100 Babesia spp. tick-borne parasites are known to infect mammalian and avian hosts. Babesia belong to Order Piroplasmid ranked in the Phylum Apicomplexa. Recent phylogenetic studies have revealed that of the three genera that constitute Piroplasmida, Babesia and Theileria are polyphyletic while Cytauxzoon is nested within a clade of Theileria. Several Babesia spp. and sub-types have been found to cause human disease. Babesia microti, the most common species that infects humans, is endemic in the Northeastern and upper Midwestern United States and is sporadically reported elsewhere in the world. Most infections are transmitted by Ixodid (hard-bodied) ticks, although they occasionally can be spread through blood transfusion and rarely via perinatal transmission and organ transplantation. Babesiosis most often presents as a mild to moderate disease, however infection severity ranges from asymptomatic to lethal. Diagnosis is usually confirmed by blood smear or polymerase chain reaction (PCR). Treatment consists of atovaquone and azithromycin or clindamycin and quinine and usually is effective but may be problematic in immunocompromised hosts. There is no human Babesia vaccine. B. microti genomics studies have only recently been initiated, however they already have yielded important new insights regarding the pathogen, population structure, and pathogenesis. Continued genomic research holds great promise for improving the diagnosis, management, and prevention of human babesiosis, and in particular, the identification of lineage-specific families of cell-surface proteins with potential roles in cytoadherence, immune evasion and pathogenesis.

5.
Sci Transl Med ; 13(597)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108248

RESUMO

Malaria vaccines that disrupt the Plasmodium life cycle in mosquitoes and reduce parasite transmission in endemic areas are termed transmission-blocking vaccines (TBVs). Despite decades of research, there are only a few Plasmodium falciparum antigens that indisputably and reproducibly demonstrate transmission-blocking immunity. So far, only two TBV candidates have advanced to phase 1/2 clinical testing with limited success. By applying an unbiased transcriptomics-based approach, we have identified Pf77 and male development gene 1 (PfMDV-1) as two P. falciparum TBV antigens that, upon immunization, induced antibodies that caused reductions in oocyst counts in Anopheles mosquito midguts in a standard membrane feeding assay. In-depth studies were performed to characterize the genetic diversity of, stage-specific expression by, and natural immunity to these two molecules to evaluate their suitability as TBV candidates. Pf77 and PfMDV-1 display limited antigenic polymorphism, are pan-developmentally expressed within the parasite, and induce naturally occurring antibodies in Ghanaian adults, which raises the prospect of natural boosting of vaccine-induced immune response in endemic regions. Together, these biological properties suggest that Pf77 and PfMDV-1 may warrant further investigation as TBV candidates.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Animais , Anticorpos Antiprotozoários , Antígenos de Protozoários/genética , Gana , Malária Falciparum/prevenção & controle , Masculino , Plasmodium falciparum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...