Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(19): 31308-31315, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710653

RESUMO

Achieving high repeatability and efficiency in laser-induced strong shock wave excitation remains a significant technical challenge, as evidenced by the extensive efforts undertaken at large-scale national laboratories to optimize the compression of light element pellets. In this study, we propose and model a novel optical design for generating strong shocks at a tabletop scale. Our approach leverages the spatial and temporal shaping of multiple laser pulses to form concentric laser rings on condensed matter samples. Each laser ring initiates a two-dimensional focusing shock wave that overlaps and converges with preceding shock waves at a central point within the ring. We present preliminary experimental results for a single ring configuration. To enable high-power laser focusing at the micron scale, we demonstrate experimentally the feasibility of employing dielectric metasurfaces with exceptional damage threshold, experimentally determined to be 1.1 J/cm2, as replacements for conventional optics. These metasurfaces enable the creation of pristine, high-fluence laser rings essential for launching stable shock waves in materials. Herein, we showcase results obtained using a water sample, achieving shock pressures in the gigapascal (GPa) range. Our findings provide a promising pathway towards the application of laser-induced strong shock compression in condensed matter at the microscale.

2.
Sci Adv ; 9(24): eadh0369, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327327

RESUMO

Optical singularities play a major role in modern optics and are frequently deployed in structured light, super-resolution microscopy, and holography. While phase singularities are uniquely defined as locations of undefined phase, polarization singularities studied thus far are either partial, i.e., bright points of well-defined polarization, or are unstable for small field perturbations. We demonstrate a complete, topologically protected polarization singularity; it is located in the four-dimensional space spanned by the three spatial dimensions and the wavelength and is created in the focus of a cascaded metasurface-lens system. The field Jacobian plays a key role in the design of such higher-dimensional singularities, which can be extended to multidimensional wave phenomena, and pave the way for unconventional applications in topological photonics and precision sensing.


Assuntos
Holografia , Lentes , Microscopia
3.
Nat Commun ; 14(1): 3237, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277345

RESUMO

Phase singularities are loci of darkness surrounded by monochromatic light in a scalar field, with applications in optical trapping, super-resolution imaging, and structured light-matter interactions. Although 1D singular structures, like optical vortices, are common due to their robust topological properties, uncommon 0D (point) and 2D (sheet) singularities can be generated by wavefront-shaping devices like metasurfaces. With the design flexibility of metasurfaces, we deterministically position ten identical point singularities using a single illumination source. The phasefront is inverse-designed using phase-gradient maximization with an automatically-differentiable propagator and produces tight longitudinal intensity confinement. The array is experimentally realized with a TiO2 metasurface. One possible application is blue-detuned neutral atom trap arrays, for which this field would enforce 3D confinement and a potential depth around 0.22 mK per watt of incident laser power. We show that metasurface-enabled point singularity engineering may significantly simplify and miniaturize the optical architecture for super-resolution microscopes and dark traps.

4.
ACS Nano ; 16(10): 16539-16548, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36215293

RESUMO

Metasurfaces have been extensively engineered to produce a wide range of optical phenomena, allowing exceptional control over the propagation of light. However, they are generally designed as single-purpose devices without a modifiable postfabrication optical response, which can be a limitation to real-world applications. In this work, we report a nanostructured planar-fused silica metalens permeated with a nematic liquid crystal (NLC) and gold nanoparticle solution. The physical properties of embedded NLCs can be manipulated with the application of external stimuli, enabling reconfigurable optical metasurfaces. We report the all-optical, dynamic control of the metalens optical response resulting from thermoplasmonic-induced changes of the NLC solution associated with the nematic-isotropic phase transition. A continuous and reversible tuning of the metalens focal length is experimentally demonstrated, with a variation of 80 µm (0.16% of the 5 cm nominal focal length) along the optical axis. This is achieved without direct mechanical or electrical manipulation of the device. The reconfigurable properties are compared with corroborating numerical simulations of the focal length shift and exhibit close correspondence.

5.
Nat Commun ; 13(1): 3170, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668071

RESUMO

Electro-optic modulators are essential for sensing, metrology and telecommunications. Most target fiber applications. Instead, metasurface-based architectures that modulate free-space light at gigahertz (GHz) speeds can boost flat optics technology by microwave electronics for active optics, diffractive computing or optoelectronic control. Current realizations are bulky or have low modulation efficiencies. Here, we demonstrate a hybrid silicon-organic metasurface platform that leverages Mie resonances for efficient electro-optic modulation at GHz speeds. We exploit quasi bound states in the continuum (BIC) that provide narrow linewidth (Q = 550 at [Formula: see text] nm), light confinement to the non-linear material, tunability by design and voltage and GHz-speed electrodes. Key to the achieved modulation of [Formula: see text] are molecules with r33 = 100 pm/V and optical field optimization for low-loss. We demonstrate DC tuning of the resonant frequency of quasi-BIC by [Formula: see text] 11 nm, surpassing its linewidth, and modulation up to 5 GHz (fEO,-3dB = 3 GHz). Guided mode resonances tune by [Formula: see text] 20 nm. Our hybrid platform may incorporate free-space nanostructures of any geometry or material, by application of the active layer post-fabrication.

6.
Nano Lett ; 21(20): 8642-8649, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34634205

RESUMO

Free-standing nanofins or pillar meta-atoms are the most common constituent building blocks in metalenses and metasurfaces in general. Here, we present an alternative metasurface geometry based on high aspect ratio via-holes. We design and characterize metalenses comprising ultradeep via-holes in 5 µm thick free-standing silicon membranes with hole aspect ratios approaching 30:1. These metalenses focus incident infrared light into a diffraction-limited spot. Instead of shaping the metasurface optical phase profile alone, we engineer both transmitted phase and amplitude profiles simultaneously by inverse-designing the lens effective index profile. This approach improves the impedance match between the incident and transmitted waves, thereby increasing the focusing efficiency. The holey platform increases the accessible aspect ratio of optical nanostructures without sacrificing mechanical robustness. The high nanostructure aspect ratio also increases the chromatic group delay range attainable, paving the way for a generation of high aspect ratio ruggedized flat optics, including large-area broadband achromatic metalenses.

7.
Nat Commun ; 12(1): 5928, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635655

RESUMO

Tailored nanostructures provide at-will control over the properties of light, with applications in imaging and spectroscopy. Active photonics can further open new avenues in remote monitoring, virtual or augmented reality and time-resolved sensing. Nanomaterials with χ(2) nonlinearities achieve highest switching speeds. Current demonstrations typically require a trade-off: they either rely on traditional χ(2) materials, which have low non-linearities, or on application-specific quantum well heterostructures that exhibit a high χ(2) in a narrow band. Here, we show that a thin film of organic electro-optic molecules JRD1 in polymethylmethacrylate combines desired merits for active free-space optics: broadband record-high nonlinearity (10-100 times higher than traditional materials at wavelengths 1100-1600 nm), a custom-tailored nonlinear tensor at the nanoscale, and engineered optical and electronic responses. We demonstrate a tuning of optical resonances by Δλ = 11 nm at DC voltages and a modulation of the transmitted intensity up to 40%, at speeds up to 50 MHz. We realize 2 × 2 single- and 1 × 5 multi-color spatial light modulators. We demonstrate their potential for imaging and remote sensing. The compatibility with compact laser diodes, the achieved millimeter size and the low power consumption are further key features for laser ranging or reconfigurable optics.

8.
Nat Commun ; 12(1): 4190, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234140

RESUMO

Optical phase singularities are zeros of a scalar light field. The most systematically studied class of singular fields is vortices: beams with helical wavefronts and a linear (1D) singularity along the optical axis. Beyond these common and stable 1D topologies, we show that a broader family of zero-dimensional (point) and two-dimensional (sheet) singularities can be engineered. We realize sheet singularities by maximizing the field phase gradient at the desired positions. These sheets, owning to their precise alignment requirements, would otherwise only be observed in rare scenarios with high symmetry. Furthermore, by applying an analogous procedure to the full vectorial electric field, we can engineer paraxial transverse polarization singularity sheets. As validation, we experimentally realize phase and polarization singularity sheets with heart-shaped cross-sections using metasurfaces. Singularity engineering of the dark enables new degrees of freedom for light-matter interaction and can inspire similar field topologies beyond optics, from electron beams to acoustics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...