Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 40(22): 5287-90, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26565856

RESUMO

The observation of the electro-optic effect in strained silicon waveguides has been considered a direct manifestation of an induced χ(2) nonlinearity in the material. In this work, we perform high-frequency measurements on strained silicon racetrack resonators. Strain is controlled by a mechanical deformation of the waveguide. It is shown that any optical modulation vanishes, independent of the applied strain, when the applied voltage varies much faster than the carrier effective lifetime and that the DC modulation is also largely independent of the applied strain. This demonstrates that plasma carrier dispersion is responsible for the observed electro-optic effect. After normalizing out free-carrier effects, our results set an upper limit of (8±3) pm/V to the induced high-speed effective χeff,zzz(2) tensor element at an applied stress of -0.5 GPa. This upper limit is about 1 order of magnitude lower than previously reported values for static electro-optic measurements.

2.
Opt Lett ; 40(8): 1877-80, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25872097

RESUMO

We measure the voltage-dependent phase shift in silicon waveguides strained by a silicon nitride layer and show that, in our measurements, the phase shift is due to free carrier accumulation inside the waveguides. Nonetheless, inverting the applied voltage also inverts the applied phase shift-an effect due to a quasi-static surface charge in the silicon nitride. Since the measured effect is on the same order as recently published second-order nonlinearities attributed to the Pockels effect, inclusion of these carrier-based effects in the analysis of experimental data is of paramount importance.

3.
Sci Rep ; 4: 6310, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25209255

RESUMO

Ring resonator modulators (RRM) combine extreme compactness, low power consumption and wavelength division multiplexing functionality, making them a frontrunner for addressing the scalability requirements of short distance optical links. To extend data rates beyond the classically assumed bandwidth capability, we derive and experimentally verify closed form equations of the electro-optic response and asymmetric side band generation resulting from inherent transient time dynamics and leverage these to significantly improve device performance. An equivalent circuit description with a commonly used peaking amplifier model allows straightforward assessment of the effect on existing communication system architectures. A small signal analytical expression of peaking in the electro-optic response of RRMs is derived and used to extend the electro-optic bandwidth of the device above 40 GHz as well as to open eye diagrams penalized by intersymbol interference at 32, 40 and 44 Gbps. Predicted peaking and asymmetric side band generation are in excellent agreement with experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...