Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cardiovasc Res ; 1(11): 1006-1021, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36910472

RESUMO

Sinusoids are specialized, low pressure blood vessels in the liver, bone marrow, and spleen required for definitive hematopoiesis. Unlike other blood endothelial cells (ECs), sinusoidal ECs express high levels of VEGFR3. VEGFR3 and its ligand VEGF-C are known to support lymphatic growth, but their function in sinusoidal vessels is unknown. In this study, we define a reciprocal VEGF-C/VEGFR3-CDH5 (VE-cadherin) signaling axis that controls growth of both sinusoidal and lymphatic vessels. Loss of VEGF-C or VEGFR3 resulted in cutaneous edema, reduced fetal liver size, and bloodless bone marrow due to impaired lymphatic and sinusoidal vessel growth. Mice with membrane-retained VE-cadherin conferred identical lymphatic and sinusoidal defects, suggesting that VE-cadherin opposes VEGF-C/VEGFR3 signaling. In developing mice, loss of VE-cadherin rescued defects in sinusoidal and lymphatic growth caused by loss of VEGFR3 but not loss of VEGF-C, findings explained by potentiated VEGF-C/VEGFR2 signaling in VEGFR3-deficient lymphatic ECs. Mechanistically, VEGF-C/VEGFR3 signaling induces VE-cadherin endocytosis and loss of function via SRC-mediated phosphorylation, while VE-cadherin prevents VEGFR3 endocytosis required for optimal receptor signaling. These findings establish an essential role for VEGF-C/VEGFR3 signaling during sinusoidal vascular growth, identify VE-cadherin as a powerful negative regulator of VEGF-C signaling that acts through both VEGFR3 and VEGFR2 receptors, and suggest that negative regulation of VE-cadherin is required for effective VEGF-C/VEGFR3 signaling during growth of sinusoidal and lymphatic vessels. Manipulation of this reciprocal negative regulatory mechanism, e.g. by reducing VE-cadherin function, may be used to stimulate therapeutic sinusoidal or lymphatic vessel growth.

2.
Nature ; 594(7862): 271-276, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33910229

RESUMO

Vascular malformations are thought to be monogenic disorders that result in dysregulated growth of blood vessels. In the brain, cerebral cavernous malformations (CCMs) arise owing to inactivation of the endothelial CCM protein complex, which is required to dampen the activity of the kinase MEKK31-4. Environmental factors can explain differences in the natural history of CCMs between individuals5, but why single CCMs often exhibit sudden, rapid growth, culminating in strokes or seizures, is unknown. Here we show that growth of CCMs requires increased signalling through the phosphatidylinositol-3-kinase (PI3K)-mTOR pathway as well as loss of function of the CCM complex. We identify somatic gain-of-function mutations in PIK3CA and loss-of-function mutations in the CCM complex in the same cells in a majority of human CCMs. Using mouse models, we show that growth of CCMs requires both PI3K gain of function and CCM loss of function in endothelial cells, and that both CCM loss of function and increased expression of the transcription factor KLF4 (a downstream effector of MEKK3) augment mTOR signalling in endothelial cells. Consistent with these findings, the mTORC1 inhibitor rapamycin effectively blocks the formation of CCMs in mouse models. We establish a three-hit mechanism analogous to cancer, in which aggressive vascular malformations arise through the loss of vascular 'suppressor genes' that constrain vessel growth and gain of a vascular 'oncogene' that stimulates excess vessel growth. These findings suggest that aggressive CCMs could be treated using clinically approved mTORC1 inhibitors.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Mutação , Neoplasias/genética , Animais , Animais Recém-Nascidos , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Mutação com Ganho de Função , Hemangioma Cavernoso do Sistema Nervoso Central/irrigação sanguínea , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Mutação com Perda de Função , MAP Quinase Quinase Quinase 3/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
3.
Nat Commun ; 11(1): 2659, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461638

RESUMO

Cavernous angiomas (CA) are common vascular anomalies causing brain hemorrhage. Based on mouse studies, roles of gram-negative bacteria and altered intestinal homeostasis have been implicated in CA pathogenesis, and pilot study had suggested potential microbiome differences between non-CA and CA individuals based on 16S rRNA gene sequencing. We here assess microbiome differences in a larger cohort of human subjects with and without CA, and among subjects with different clinical features, and conduct more definitive microbial analyses using metagenomic shotgun sequencing. Relative abundance of distinct bacterial species in CA patients is shown, consistent with postulated permissive microbiome driving CA lesion genesis via lipopolysaccharide signaling, in humans as in mice. Other microbiome differences are related to CA clinical behavior. Weighted combinations of microbiome signatures and plasma inflammatory biomarkers enhance associations with disease severity and hemorrhage. This is the first demonstration of a sensitive and specific diagnostic microbiome in a human neurovascular disease.


Assuntos
Microbioma Gastrointestinal/genética , Hemangioma Cavernoso/complicações , Adolescente , Adulto , Biomarcadores/sangue , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/microbiologia , DNA Bacteriano/genética , Fezes/microbiologia , Feminino , Hemangioma Cavernoso/diagnóstico , Humanos , Intestinos/microbiologia , Intestinos/patologia , Masculino , Metagenômica , Pessoa de Meia-Idade , Projetos Piloto , RNA Ribossômico 16S/genética , Adulto Jovem
4.
Nature ; 545(7654): 305-310, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28489816

RESUMO

Cerebral cavernous malformations (CCMs) are a cause of stroke and seizure for which no effective medical therapies yet exist. CCMs arise from the loss of an adaptor complex that negatively regulates MEKK3-KLF2/4 signalling in brain endothelial cells, but upstream activators of this disease pathway have yet to be identified. Here we identify endothelial Toll-like receptor 4 (TLR4) and the gut microbiome as critical stimulants of CCM formation. Activation of TLR4 by Gram-negative bacteria or lipopolysaccharide accelerates CCM formation, and genetic or pharmacologic blockade of TLR4 signalling prevents CCM formation in mice. Polymorphisms that increase expression of the TLR4 gene or the gene encoding its co-receptor CD14 are associated with higher CCM lesion burden in humans. Germ-free mice are protected from CCM formation, and a single course of antibiotics permanently alters CCM susceptibility in mice. These studies identify unexpected roles for the microbiome and innate immune signalling in the pathogenesis of a cerebrovascular disease, as well as strategies for its treatment.


Assuntos
Microbioma Gastrointestinal/imunologia , Hemangioma Cavernoso do Sistema Nervoso Central/imunologia , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Imunidade Inata , Receptor 4 Toll-Like/imunologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Suscetibilidade a Doenças , Células Endoteliais/metabolismo , Feminino , Vida Livre de Germes , Bactérias Gram-Negativas/imunologia , Hemangioma Cavernoso do Sistema Nervoso Central/microbiologia , Humanos , Injeções Intravenosas , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Transdução de Sinais , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética
5.
J Clin Invest ; 122(6): 2006-17, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22622036

RESUMO

Human vascular malformations cause disease as a result of changes in blood flow and vascular hemodynamic forces. Although the genetic mutations that underlie the formation of many human vascular malformations are known, the extent to which abnormal blood flow can subsequently influence the vascular genetic program and natural history is not. Loss of the SH2 domain-containing leukocyte protein of 76 kDa (SLP76) resulted in a vascular malformation that directed blood flow through mesenteric lymphatic vessels after birth in mice. Mesenteric vessels in the position of the congenital lymphatic in mature Slp76-null mice lacked lymphatic identity and expressed a marker of blood vessel identity. Genetic lineage tracing demonstrated that this change in vessel identity was the result of lymphatic endothelial cell reprogramming rather than replacement by blood endothelial cells. Exposure of lymphatic vessels to blood in the absence of significant flow did not alter vessel identity in vivo, but lymphatic endothelial cells exposed to similar levels of shear stress ex vivo rapidly lost expression of PROX1, a lymphatic fate-specifying transcription factor. These findings reveal that blood flow can convert lymphatic vessels to blood vessels, demonstrating that hemodynamic forces may reprogram endothelial and vessel identity in cardiovascular diseases associated with abnormal flow.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anormalidades Cardiovasculares/metabolismo , Células Endoteliais/metabolismo , Proteínas de Homeodomínio/biossíntese , Vasos Linfáticos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Velocidade do Fluxo Sanguíneo , Anormalidades Cardiovasculares/patologia , Linhagem Celular , Células Endoteliais/patologia , Proteínas de Homeodomínio/genética , Humanos , Vasos Linfáticos/anormalidades , Vasos Linfáticos/patologia , Camundongos , Camundongos Mutantes , Fosfoproteínas/genética , Proteínas Supressoras de Tumor/genética
6.
Blood ; 118(13): 3661-9, 2011 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-21816834

RESUMO

Mammalian platelets are small, anuclear circulating cells that form tightly adherent, shear-resistant thrombi to prevent blood loss after vessel injury. Platelet thrombi that form in coronary and carotid arteries also underlie common vascular diseases such as myocardial infarction and stroke and are the target of drugs used to treat these diseases. Birds have high-pressure cardiovascular systems like mammals but generate nucleated thrombocytes rather than platelets. Here, we show that avian thrombocytes respond to many of the same activating stimuli as mammalian platelets but are unable to form shear-resistant aggregates ex vivo. Avian thrombocytes are larger than mammalian platelets, spread less efficiently on collagen, and express much lower levels of the α(2b)ß3 integrin required for aggregate formation, features predicted to make thrombocyte aggregates less resistant than platelets are to the high fluid shear forces of the arterial vasculature. In vivo carotid vessel injury stimulates the formation of occlusive platelet thrombi in mice but not in the size- and flow-matched carotid artery of the Australian budgerigar. These studies indicate that unique physical and molecular features of mammalian platelets enable them to form shear-resistant arterial thrombi, an essential element in the pathogenesis of human cardiovascular diseases.


Assuntos
Arteriopatias Oclusivas/etiologia , Evolução Biológica , Aves , Doenças Cardiovasculares/etiologia , Mamíferos , Trombose/etiologia , Lesões do Sistema Vascular/complicações , Animais , Arteriopatias Oclusivas/patologia , Artérias/lesões , Doenças das Aves/etiologia , Aves/fisiologia , Doenças Cardiovasculares/patologia , Galinhas/lesões , Feminino , Humanos , Masculino , Mamíferos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Doenças das Aves Domésticas/etiologia , Trombose/patologia , Lesões do Sistema Vascular/patologia
7.
Blood ; 116(4): 661-70, 2010 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-20363774

RESUMO

Although platelets appear by embryonic day 10.5 in the developing mouse, an embryonic role for these cells has not been identified. The SYK-SLP-76 signaling pathway is required in blood cells to regulate embryonic blood-lymphatic vascular separation, but the cell type and molecular mechanism underlying this regulatory pathway are not known. In the present study we demonstrate that platelets regulate lymphatic vascular development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2 (CLEC-2) receptors. PODOPLANIN (PDPN), a transmembrane protein expressed on the surface of lymphatic endothelial cells, is required in nonhematopoietic cells for blood-lymphatic separation. Genetic loss of the PDPN receptor CLEC-2 ablates PDPN binding by platelets and confers embryonic lymphatic vascular defects like those seen in animals lacking PDPN or SLP-76. Platelet factor 4-Cre-mediated deletion of Slp-76 is sufficient to confer lymphatic vascular defects, identifying platelets as the cell type in which SLP-76 signaling is required to regulate lymphatic vascular development. Consistent with these genetic findings, we observe SLP-76-dependent platelet aggregate formation on the surface of lymphatic endothelial cells in vivo and ex vivo. These studies identify a nonhemostatic pathway in which platelet CLEC-2 receptors bind lymphatic endothelial PDPN and activate SLP-76 signaling to regulate embryonic vascular development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Plaquetas/fisiologia , Lectinas Tipo C/fisiologia , Vasos Linfáticos/embriologia , Vasos Linfáticos/fisiologia , Fosfoproteínas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Plaquetas/metabolismo , Vasos Sanguíneos/metabolismo , Células Cultivadas , Embrião de Mamíferos , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Endotélio Linfático/embriologia , Endotélio Linfático/metabolismo , Endotélio Vascular/embriologia , Endotélio Vascular/metabolismo , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Vasos Linfáticos/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
8.
Blood ; 113(25): 6428-39, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19258597

RESUMO

Circulating platelets exhibit rapid signaling and adhesive responses to collagen that facilitate hemostasis at sites of vessel injury. Because platelets are anuclear, their collagen receptors must be expressed by megakaryocytes, platelet precursors that arise in the collagen-rich environment of the bone marrow. Whether and how megakaryocytes regulate collagen adhesion during their development in the bone marrow are unknown. We find that surface expression of activated, but not wild-type, alpha2 integrins in hematopoietic cells in vivo results in the generation of platelets that lack surface alpha2 receptors. Culture of hematopoietic progenitor cells ex vivo reveals that surface levels of activated, but not wild-type, alpha2 integrin receptors are rapidly down-regulated during cell growth on collagen but reach wild-type levels when cells are grown in the absence of collagen. Progenitor cells that express activated alpha2 integrins are normally distributed in the bone marrow in vivo and exhibit normal migration across a collagen-coated membrane ex vivo. This migration is accompanied by rapid down-regulation of activated surface integrins. These studies identify ligand-dependent removal of activated alpha2 receptors from the cell surface as a mechanism by which integrin function can be negatively regulated in hematopoietic cells during migration between the adhesive environment of the bone marrow and the nonadhesive environment of the circulating blood.


Assuntos
Integrina alfa2/metabolismo , Megacariócitos/citologia , Trombopoese , Animais , Células Sanguíneas/citologia , Células da Medula Óssea/citologia , Adesão Celular , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Colágeno/metabolismo , Colágeno/farmacologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Integrina alfa2/genética , Integrina beta1/metabolismo , Leucemia Basofílica Aguda/patologia , Fígado/citologia , Fígado/embriologia , Megacariócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteínas da Membrana de Plaquetas/deficiência , Glicoproteínas da Membrana de Plaquetas/genética , Mutação Puntual , Ligação Proteica , Quimera por Radiação , Ratos , Proteínas Recombinantes de Fusão/fisiologia
9.
J Clin Invest ; 116(4): 929-39, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16557299

RESUMO

GATA transcription factors play critical roles in restricting cell lineage differentiation during development. Here, we show that conditional inactivation of GATA-6 in VSMCs results in perinatal mortality from a spectrum of cardiovascular defects, including interrupted aortic arch and persistent truncus arteriosus. Inactivation of GATA-6 in neural crest recapitulates these abnormalities, demonstrating a cell-autonomous requirement for GATA-6 in neural crest-derived SMCs. Surprisingly, the observed defects do not result from impaired SMC differentiation but rather are associated with severely attenuated expression of semaphorin 3C, a signaling molecule critical for both neuronal and vascular patterning. Thus, the primary function of GATA-6 during cardiovascular development is to regulate morphogenetic patterning of the cardiac outflow tract and aortic arch. These findings provide new insights into the conserved functions of the GATA-4, -5, and -6 subfamily members and identify GATA-6 and GATA-6-regulated genes as candidates involved in the pathogenesis of congenital heart disease.


Assuntos
Anormalidades Cardiovasculares/genética , Fator de Transcrição GATA6/metabolismo , Coração/embriologia , Crista Neural/metabolismo , Semaforinas/genética , Animais , Aorta/crescimento & desenvolvimento , Aorta/metabolismo , Diferenciação Celular , Feminino , Fator de Transcrição GATA6/genética , Deleção de Genes , Marcação de Genes , Cardiopatias Congênitas/genética , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Morfogênese , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso , Semaforinas/metabolismo , Especificidade da Espécie , Transfecção
10.
Genesis ; 41(4): 179-84, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15789423

RESUMO

The cytoskeletal protein SM22alpha is expressed in visceral and vascular smooth muscle cells (SMCs), in cardiac myocytes, and in the myotomal components of the somites during murine embryonic development. In this report, we describe the generation and characterization of transgenic mice expressing Cre-recombinase under the transcriptional control of the -2.8-kb SM22alpha promoter. Following interbreeding with the R26R reporter strain, Cre-dependent beta-galactosidase expression was observed as early as embryonic day 9.5 in SMCs of the developing vasculature, in cardiac myocytes, but not in the somites. In adult mice, Cre-mediated recombination was observed in vascular SMCs throughout the venous and arterial systems, in visceral SMCs in multiple organs, and in cardiac, but not skeletal muscle. Importantly, Cre-mediated recombination was present in nearly 100% of arterial SMCs, including in the aorta. These mice are thus an important new tool for performing in vivo loss-of-function studies of genes expressed in vascular SMCs.


Assuntos
Sistema Cardiovascular/crescimento & desenvolvimento , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/fisiologia , Músculo Liso Vascular/citologia , beta-Galactosidase/biossíntese , Animais , Feminino , Integrases/metabolismo , Masculino , Camundongos , Modelos Animais , Mutagênese , Miócitos Cardíacos , Recombinação Genética
11.
Arterioscler Thromb Vasc Biol ; 25(2): 309-14, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15591218

RESUMO

OBJECTIVE: Previous studies suggested the zinc-finger transcription factor GATA-6 inhibits vascular smooth muscle cell (VSMC) proliferation and promotes the contractile VSMC phenotype. The objective of this study was to identify bona fide target genes regulated by GATA-6 in VSMCs. METHODS AND RESULTS: Microarray analyses were performed comparing mRNA from rat aortic smooth muscle cells (SMCs) infected with either adenovirus encoding a dominant-negative GATA-6/engrailed fusion protein or with control adenovirus. These studies identified 122 genes differentially expressed by at least 2-fold, including multiple genes involved in cell-cell signaling and cell-matrix interactions. Among these, endothelin-1 and the angiotensin type(1a) (AT(1a)) receptor are known to be induced in VSMCs in response to inflammatory stimuli and to be expressed in a GATA-dependent manner in cardiac myocytes in response to hemodynamic stress. Consistent with these findings, the endothelin-1 and AT(1a) receptor promoters were activated by forced expression of GATA-6 and repressed by forced expression of GATA-6/engrailed. Surprisingly, genes encoding SMC contractile proteins were not altered, and myocardin-induced SMC differentiation was not impaired in GATA-6(-/-) embryonic stem cells. CONCLUSIONS: These data demonstrate that in VSMCs, GATA-6 regulates a set of genes associated with synthetic SMC functions and suggest that this transcriptional pathway may be independent from myocardin-induced SMC differentiation. An unbiased microarray screen of genes regulated by GATA-6 in VSMCs identified multiple genes involved in cell-cell signaling and cell-matrix interactions. The endothelin-1 and the AT1a receptor genes were shown to be direct GATA-6 target genes. These data suggest that GATA-6 plays a role in promoting synthetic functions in VSMCs.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas Musculares/biossíntese , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular , Células Cultivadas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila , Endotelina-1/biossíntese , Endotelina-1/genética , Fator de Transcrição GATA6 , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Proteínas Musculares/genética , Células NIH 3T3/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Receptor Tipo 1 de Angiotensina/biossíntese , Receptor Tipo 1 de Angiotensina/genética , Proteínas Recombinantes de Fusão/fisiologia , Proteínas Repressoras/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/genética , Transativadores/fisiologia , Fatores de Transcrição/genética , Transcrição Gênica
12.
J Biol Chem ; 279(17): 17578-86, 2004 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-14970199

RESUMO

The SAP domain transcription factor myocardin plays a critical role in the transcriptional program regulating smooth muscle cell differentiation. In this report, we describe the capacity of myocardin to physically associate with megakaryoblastic leukemia factor-1 (MKL1) and characterize the function of MKL1 in smooth muscle cells (SMCs). The MKL1 gene is expressed in most human tissues and myocardin and MKL are co-expressed in SMCs. MKL1 and myocardin physically associate via conserved leucine zipper domains. Overexpression of MKL1 transactivates serum response factor (SRF)-dependent SMC-restricted transcriptional regulatory elements including the SM22alpha promoter, smooth muscle myosin heavy chain promoter/enhancer, and SM-alpha-actin promoter/enhancer in non-SMCs. Moreover, forced expression of MKL1 and SRF in undifferentiated SRF(-/-) embryonic stem cells activates multiple endogenous SMC-restricted genes at levels equivalent to, or exceeding, myocardin. Forced expression of a dominant-negative MKL1 mutant reduces myocardin-induced activation of the SMC-specific SM22alpha promoter. In NIH3T3 fibroblasts MKL1 localizes to the cytoplasm and translocates to the nucleus in response to serum stimulation, actin treadmilling, and RhoA signaling. In contrast, in SMCs MKL1 is observed exclusively in the nucleus regardless of serum conditions or RhoA signaling. However, when actin polymerization is disrupted MKL1 translocates from the nucleus to the cytoplasm in SMCs. Together, these data were consistent with a model wherein MKL1 transduces signals from the cytoskeleton to the nucleus in SMCs and regulates SRF-dependent SMC differentiation autonomously or in concert with myocardin.


Assuntos
Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/fisiologia , Embrião de Mamíferos/citologia , Miócitos de Músculo Liso/citologia , Proteínas de Fusão Oncogênica/fisiologia , Transdução de Sinais , Células-Tronco/citologia , Animais , Northern Blotting , Células COS , Diferenciação Celular , Núcleo Celular/metabolismo , Células Cultivadas , Cromatina/metabolismo , Citoplasma/metabolismo , DNA Complementar/metabolismo , Genes Dominantes , Humanos , Imuno-Histoquímica , Luciferases/metabolismo , Camundongos , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Plasmídeos/metabolismo , Testes de Precipitina , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Distribuição Tecidual , Transativadores/metabolismo , Ativação Transcricional , Transfecção , Técnicas do Sistema de Duplo-Híbrido
13.
Biochem Biophys Res Commun ; 305(3): 624-32, 2003 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-12763040

RESUMO

We generated a three-dimensional (3-D) model of human airway tissues in order to study initiation of inhalational form of anthrax infection. The system was designed to model the air-blood barrier of the respiratory tract represented by epithelial cells and macrophages. When grown on collagen/fibronectin gel support at an air-liquid interface, airway epithelial cells formed cell layers morphologically resembling those in vivo. These preformed epithelial cell cultures were further supplemented with monocytes/macrophages isolated from human blood. After 2-5 days of co-culture, monocytes differentiated into a phenotype of resident macrophages, which was evaluated by the expression of specific cell surface markers. This model allowed sorting out the role of each type of cell found at the air surface of the lung. The interdependence of macrophages and epithelial cells in the clearance of anthrax spores from airways and the capacity of the airway epithelial cells to protect from anthrax infection was demonstrated.


Assuntos
Bacillus anthracis/patogenicidade , Pulmão/citologia , Modelos Anatômicos , Mucosa Respiratória/citologia , Mucosa Respiratória/microbiologia , Antraz/etiologia , Antraz/microbiologia , Bacillus anthracis/crescimento & desenvolvimento , Células Cultivadas , Técnicas de Cocultura , Citocinas/biossíntese , Humanos , Exposição por Inalação , Macrófagos Alveolares/citologia , Mucosa Respiratória/metabolismo , Esporos Bacterianos/isolamento & purificação , Células Tumorais Cultivadas
14.
In Vitro Cell Dev Biol Anim ; 39(10): 449-53, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14705957

RESUMO

Although the ES-D3 murine embryonic stem cell line was one of the first derived, little information exists on the in vitro differentiation potential of these cells. We have used immunocytochemical and flow cytometric methods to monitor ES-D3 embryoid body differentiation in vitro during a 21-d period. Spontaneous differentiation of embryoid body cells was induced by leukemia inhibitory factor withdrawal in the absence of feeder cells. The pluripotent stem cell markers Oct-3/4, SSEA-1, and EMA-1 were found to persist for at least 7 d, whereas the primitive endoderm marker cytokeratin endo-A was expressed at increasing levels from day 6. The localization of these antigens within the embryoid bodies suggested that embryonic ectoderm- and primitive endoderm-derived tissues were segregated. Localized expression of class III beta-tubulin and sarcomeric myosin also was detected, indicating that representatives of all three embryonic germ layers were present after induction of differentiation in vitro.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Fosfatase Alcalina/análise , Animais , Anticorpos Monoclonais , Técnicas de Cultura de Células/métodos , Linhagem Celular , Embrião de Mamíferos , Imunofluorescência , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...