Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
JASA Express Lett ; 2(5): 054802, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-36154069

RESUMO

Complex acoustic systems typically present three-dimensional distributions of noise sources. Conventional acoustic imaging methods with planar microphone arrays are unsuitable for three-dimensional acoustic imaging, given the computational demands and the incapability to explicitly account for the presence of multiple sources. This paper proposes the use of global optimization methods to solve these shortcomings. An experiment with three incoherent speakers proved that this method can accurately determine the three-dimensional location and the respective sound level of each individual source. In addition, super-resolution is achieved beyond half the Rayleigh resolution limit.


Assuntos
Acústica , Modelos Teóricos , Ruído
3.
J Acoust Soc Am ; 146(2): 1085, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472575

RESUMO

Engine noise shielding is an important measure towards low-noise aircraft configurations. Such designs are supported by prediction tools that indicate high values for shielding of engine noise. Most prediction models approximate the complex nature of engine noise to simple noise sources such as monopoles or dipoles. This work compares predictions of noise shielding with experiments using different noise sources and shielding body geometries. The experiments considered in this work concern a monopole source shielded by a flat plate and a NACA 64-008 A wing, and a propeller shielded by the same wing. Comparisons between models and measurements are made by analysis of noise levels at individual microphones and using conventional beamforming. Results show that for the monopole cases the model predictions are in agreement with the experimental data, with an average deviation of 2-3 dB. The curvature of the leading edge of the wing influences the noise shielding results. The measured values of noise shielding of propeller noise are lower than those measured for the omni-directional source. Different types of source directivity are used to approximate the propeller in the predictions: monopole, dipole and a multi-source. The dipole approximation shows the best agreement with the experiments for the case of the propeller.

4.
J Acoust Soc Am ; 141(1): 453, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28147562

RESUMO

Conventional beamforming with a microphone array is a well-established method for localizing and quantifying sound sources. It provides estimates for the source strengths on a predefined grid by determining the agreement between the pressures measured and those modeled for a source located at the grid point under consideration. As such, conventional beamforming can be seen as an exhaustive search for those locations that provide a maximum match between measured and modeled pressures. In this contribution, the authors propose to, instead of the exhaustive search, use an efficient global optimization method to search for the source locations that maximize the agreement between model and measurement. Advantages are two-fold. First, the efficient optimization allows for inclusion of more unknowns, such as the source position in three-dimensional or environmental parameters such as the speed of sound. Second, the model for the received pressure field can be readily adapted to reflect, for example, the presence of more sound sources or environmental parameters that affect the received signals. For the work considered, the global optimization method, Differential Evolution, is selected. Results with simulated and experimental data show that sources can be accurately identified, including the distance from the source to the array.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...