Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 107: 103757, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32276188

RESUMO

The hierarchical and anisotropic mechanical behavior requirement of load-bearing soft tissues limits the utility of conventional elastomeric materials as a replacement for soft-tissue materials. Liquid-crystal elastomers (LCEs) have the potential to excel in this regard owing to its unique combination of mesogenic order in an elastomeric network. In this study, the mechanical behavior of the LCEs relevant to load-bearing biomedical applications was explored. LCEs with different network orientations (i.e., mesogen alignments) were investigated by fabricating the LCEs with polydomain and monodomain configurations. The polydomain and monodomain LCEs with the same degree of network crosslinking demonstrated diverse mechanical behavior, ranging from highly stiff and elastic nature to high damping capacity, depending on the loading direction with respect to the network alignment. The LCEs were also capable of matching the anisotropic mechanical behavior of an intervertebral disc. Additional studies were conducted on the in vivo biological response of LCEs upon subcutaneous implantation, as well as on the effect of the exposure to an in vitro simulated physiological environment on the mechanical behavior. The LCEs' mechanical response was negligibly affected when exposed to biomedically relevant conditions. Furthermore, the solid and porous LCEs did not show any adverse effect on the surrounding tissues when implanted subcutaneously in rats. The biological response allows for tissue ingrowth and helps illustrate their utility in implantable biological devices. Finally, the utility of LCEs to mimic the mechanical function of biological tissue such as intervertebral disc was demonstrated by fabricating a proof of concept total disc replacement device.


Assuntos
Elastômeros , Disco Intervertebral , Cristais Líquidos , Animais , Porosidade , Próteses e Implantes , Ratos
2.
Soft Matter ; 14(29): 6024-6036, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29974115

RESUMO

Two-stage thiol-acrylate Michael addition reactions have proven useful in programming main-chain liquid crystal elastomers (LCEs). However, the influence of excess acrylate concentration, which is critical to monodomain programming, has not previously been examined with respect to thermomechanical properties in these two-stage LCEs. Previous studies of thiol-acrylate LCEs have focused on polydomain LCEs and/or variation of thiol crosslinking monomers or linear thiol monomers. This study guides the design of monodomain LCE actuators using the two-stage methodology by varying the concentration of mesogenic acrylate monomers from 2 mol% to 45 mol% in stoichiometric excess of thiol. The findings demonstrate a technique to tailor the isotropic transition temperature by 44 °C using identical starting monomers. In contrast to expectations, low amounts of excess acrylate showed excellent fixity (90.4 ± 2.9%), while high amounts of excess acrylate did not hinder actuation strain (87.3 ± 2.3%). Tensile stress-strain properties were influenced by excess acrylate. Linear elastic behavior was observed parallel to the director with modulus increasing from 1.4 to 6.1 MPa. The soft elastic plateau was observed perpendicular to the director with initial modulus and threshold stresses increasing from 0.6 MPa to 2.6 MPa and 14 kPa to 208 kPa, respectively. Overall, this study examines the influence of excess acrylate on mechanical properties of LCE actuators.

3.
Macromol Rapid Commun ; 37(23): 1912-1917, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27717085

RESUMO

This study explores the functionalization of main-chain nematic elastomers with a conductive metallic surface layer using a polydopamine binder. Using a two-stage thiol-acrylate reaction, a programmed monodomain is achieved for thermoreversible actuation. A copper layer (≈155 nm) is deposited onto polymer samples using electroless deposition while the samples are in their elongated nematic state. Samples undergo 42% contraction when heated above the isotropic transition temperature. During the thermal cycle, buckling of the copper layer is seen in the direction perpendicular to contraction; however, transverse cracking occurs due to the large Poisson effect experienced during actuation. As a result, the electrical conductivity of the layer reduced quickly as a function of thermal cycling. However, samples do not show signs of delamination after 25 thermal cycles. These results demonstrate the ability to explore multifunctional liquid-crystalline composites using relatively facile synthesis, adhesion, and deposition techniques.


Assuntos
Materiais Revestidos Biocompatíveis/química , Cobre/química , Elastômeros/química , Indóis/química , Cristais Líquidos/química , Polímeros/química , Materiais Revestidos Biocompatíveis/síntese química , Condutividade Elétrica , Tamanho da Partícula , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...