Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 179(2): 243-53, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23316708

RESUMO

Exposure to radiofrequency (RF) electromagnetic fields (EMF) is continuously increasing worldwide. Yet, conflicting results of a possible genotoxic effect of RF EMF continue to be discussed. In the present study, a possible genotoxic effect of RF EMF (GSM, 1,800 MHz) in human lymphocytes was investigated by a collaboration of six independent institutes (institutes a, b, c, d, e, h). Peripheral blood of 20 healthy, nonsmoking volunteers of two age groups (10 volunteers 16-20 years old and 10 volunteers 50-65 years old) was taken, stimulated and intermittently exposed to three specific absorption rates (SARs) of RF EMF (0.2 W/kg, 2 W/kg, 10 W/kg) and sham for 28 h (institute a). The exposures were performed in a setup with strictly controlled conditions of temperature and dose, and randomly and automatically determined waveguide SARs, which were designed and periodically maintained by ITIS (institute h). Four genotoxicity tests with different end points were conducted (institute a): chromosome aberration test (five types of structural aberrations), micronucleus test, sister chromatid exchange test and the alkaline comet assay (Olive tail moment and % DNA). To demonstrate the validity of the study, positive controls were implemented. The genotoxicity end points were evaluated independently by three laboratories blind to SAR information (institute c = laboratory 1; institute d = laboratory 2; institute e = laboratory 3). Statistical analysis was carried out by institute b. Methods of primary statistical analysis and rules to adjust for multiple testing were specified in a statistical analysis plan based on a data review before unblinding. A linear trend test based on a linear mixed model was used for outcomes of comet assay and exact permutation test for linear trend for all other outcomes. It was ascertained that only outcomes with a significant SAR trend found by at least two of three analyzing laboratories indicated a substantiated suspicion of an exposure effect. On the basis of these specifications, none of the nine end points tested for SAR trend showed a significant and reproducible exposure effect. Highly significant differences between sham exposures and positive controls were detected by each analyzing laboratory, thus validating the study. In conclusion, the results show no evidence of a genotoxic effect induced by RF EMF (GSM, 1,800 MHz).


Assuntos
Telefone Celular , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Ondas de Rádio/efeitos adversos , Adolescente , Fatores Etários , Determinação de Ponto Final , Humanos , Laboratórios , Masculino , Pessoa de Meia-Idade , Testes de Mutagenicidade , Doses de Radiação , Inquéritos e Questionários
2.
J Toxicol Pathol ; 24(3): 149-62, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22272055

RESUMO

Inhalation of vanadium pentoxide clearly increases the incidence of alveolar/bronchiolar neoplasms in male and female B6C3F1 mice at all concentrations tested (1, 2 or 4 mg/m(3)), whereas responses in F344/N rats was, at most, ambiguous. While vanadium pentoxide is mutagenic in vitro and possibly in vivo in mice, this does not explain the species or site specificity of the neoplastic response. A nose-only inhalation study was conducted in female B6C3F1 mice (0, 0.25, 1 and 4 mg/m(3), 6 h/day for 16 days) to explore histopathological, biochemical (α-tocopherol, glutathione and F2-isoprostane) and genetic (comet assays and 9 specific DNA-oxo-adducts) changes in the lungs. No treatment related histopathology was observed at 0.25 mg/m(3). At 1 and 4 mg/m(3), exposure-dependent increases were observed in lung weight, alveolar histiocytosis, sub-acute alveolitis and/or granulocytic infiltration and a generally time-dependent increased cell proliferation rate of histiocytes. Glutathione was slightly increased, whereas there were no consistent changes in α-tocopherol or 8-isoprostane F2α. There was no evidence for DNA strand breakage in lung or BAL cells, but there was an increase in 8-oxodGuo DNA lesions that could have been due to vanadium pentoxide induction of the lesions or inhibition of repair of spontaneous lesions. Thus, earlier reports of histopathological changes in the lungs after inhalation of vanadium pentoxide were confirmed, but no evidence has yet emerged for a genotoxic mode of action. Evidence is weak for oxidative stress playing any role in lung carcinogenesis at the lowest effective concentrations of vanadium pentoxide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...