Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 140: 12-23, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331494

RESUMO

The increasing anthropogenic emissions of greenhouse gases (GHG) is encouraging extensive research in CO2 utilisation. Dry reforming of methane (DRM) depicts a viable strategy to convert both CO2 and CH4 into syngas, a worthwhile chemical intermediate. Among the different active phases for DRM, the use of nickel as catalyst is economically favourable, but typically deactivates due to sintering and carbon deposition. The stabilisation of Ni at different loadings in cerium zirconate inorganic complex structures is investigated in this work as strategy to develop robust Ni-based DRM catalysts. XRD and TPR-H2 analyses confirmed the existence of different phases according to the Ni loading in these materials. Besides, superficial Ni is observed as well as the existence of a CeNiO3 perovskite structure. The catalytic activity was tested, proving that 10 wt.% Ni loading is the optimum which maximises conversion. This catalyst was also tested in long-term stability experiments at 600 and 800°C in order to study the potential deactivation issues at two different temperatures. At 600°C, carbon formation is the main cause of catalytic deactivation, whereas a robust stability is shown at 800°C, observing no sintering of the active phase evidencing the success of this strategy rendering a new family of economically appealing CO2 and biogas mixtures upgrading catalysts.


Assuntos
Cério , Níquel , Níquel/química , Dióxido de Carbono/química , Metano/química , Cério/química , Carbono
2.
ACS Catal ; 13(11): 7230-7242, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37288092

RESUMO

Since climate change keeps escalating, it is imperative that the increasing CO2 emissions be combated. Over recent years, research efforts have been aiming for the design and optimization of materials for CO2 capture and conversion to enable a circular economy. The uncertainties in the energy sector and the variations in supply and demand place an additional burden on the commercialization and implementation of these carbon capture and utilization technologies. Therefore, the scientific community needs to think out of the box if it is to find solutions to mitigate the effects of climate change. Flexible chemical synthesis can pave the way for tackling market uncertainties. The materials for flexible chemical synthesis function under a dynamic operation, and thus, they need to be studied as such. Dual-function materials are an emerging group of dynamic catalytic materials that integrate the CO2 capture and conversion steps. Hence, they can be used to allow some flexibility in the production of chemicals as a response to the changing energy sector. This Perspective highlights the necessity of flexible chemical synthesis by focusing on understanding the catalytic characteristics under a dynamic operation and by discussing the requirements for the optimization of materials at the nanoscale.

3.
Nanomaterials (Basel) ; 13(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770467

RESUMO

CO2 emissions in the atmosphere have been increasing rapidly in recent years, causing global warming. CO2 methanation reaction is deemed to be a way to combat these emissions by converting CO2 into synthetic natural gas, i.e., CH4. NiRu/CeAl and NiRu/CeZr both demonstrated favourable activity for CO2 methanation, with NiRu/CeAl approaching equilibrium conversion at 350 °C with 100% CH4 selectivity. Its stability under high space velocity (400 L·g-1·h-1) was also commendable. By adding an adsorbent, potassium, the CO2 adsorption capability of NiRu/CeAl was boosted, allowing it to function as a dual-function material (DFM) for integrated CO2 capture and utilisation, producing 0.264 mol of CH4/kg of sample from captured CO2. Furthermore, time-resolved operando DRIFTS-MS measurements were performed to gain insights into the process mechanism. The obtained results demonstrate that CO2 was captured on basic sites and was also dissociated on metallic sites in such a way that during the reduction step, methane was produced by two different pathways. This study reveals that by adding an adsorbent to the formulation of an effective NiRu methanation catalyst, advanced dual-function materials can be designed.

4.
Nanoscale ; 14(35): 12620-12637, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35975753

RESUMO

The feasibility of a Dual Function Material (DFM) with a versatile catalyst offering switchable chemical synthesis from carbon dioxide (CO2) was demonstrated for the first time, showing evidence of the ability of these DFMs to passively capture CO2 directly from the air as well. These DFMs open up possibilities in flexible chemical production from dilute sources of CO2, through a combination of CO2 adsorption and subsequent chemical transformation (methanation, reverse water gas shift or dry reforming of methane). Combinations of Ni Ru bimetallic catalyst with Na2O, K2O or CaO adsorbent were supported on CeO2-Al2O3 to develop flexible DFMs. The designed multicomponent materials were shown to reversibly adsorb CO2 between the 350 and 650 °C temperature range and were easily regenerated by an inert gas purge stream. The components of the flexible DFMs showed a high degree of interaction with each other, which evidently enhanced their CO2 capture performance ranging from 0.14 to 0.49 mol kg-1. It was shown that captured CO2 could be converted into useful products through either CO2 methanation, reverse water-gas shift (RWGS) or dry reforming of methane (DRM), which provides flexibility in terms of co-reactant (hydrogen vs. methane) and end product (synthetic natural gas, syngas or CO) by adjusting reaction conditions. The best DFM was the one containing CaO, producing 104 µmol of CH4 per kgDFM in CO2 methanation, 58 µmol of CO per kgDFM in RWGS and 338 µmol of CO per kgDFM in DRM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...