Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 294(2): 520-530, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30446622

RESUMO

Polynucleotide kinase/phosphatase (PNKP) and X-ray repair cross-complementing 1 (XRCC1) are key proteins in the single-strand DNA break repair pathway. Phosphorylated XRCC1 stimulates PNKP by binding to its forkhead-associated (FHA) domain, whereas nonphosphorylated XRCC1 stimulates PNKP by interacting with the PNKP catalytic domain. Here, we have further studied the interactions between these two proteins, including two variants of XRCC1 (R194W and R280H) arising from single-nucleotide polymorphisms (SNPs) that have been associated with elevated cancer risk in some reports. We observed that interaction of the PNKP FHA domain with phosphorylated XRCC1 extends beyond the immediate, well-characterized phosphorylated region of XRCC1 (residues 515-526). We also found that an XRCC1 fragment, comprising residues 166-436, binds tightly to PNKP and DNA and efficiently activates PNKP's kinase activity. However, interaction of either of the SNP-derived variants of this fragment with PNKP was considerably weaker, and their stimulation of PNKP was severely reduced, although they still could bind DNA effectively. Laser microirradiation revealed reduced recruitment of PNKP to damaged DNA in cells expressing either XRCC1 variant compared with PNKP recruitment in cells expressing WT XRCC1 even though WT and variant XRCC1s were equally efficient at localizing to the damaged DNA. These findings suggest that the elevated risk of cancer associated with these XRCC1 SNPs reported in some studies may be due in part to the reduced ability of these XRCC1 variants to recruit PNKP to damaged DNA.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Polimorfismo de Nucleotídeo Único , Domínios e Motivos de Interação entre Proteínas , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Animais , Células CHO , Cricetulus , Dano ao DNA , Enzimas Reparadoras do DNA/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Mapas de Interação de Proteínas , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/química
2.
Mutat Res ; 750(1-2): 15-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23896398

RESUMO

DNA double strand breaks (DSBs) constitute one of the most dangerous forms of DNA damage. In actively replicating cells, these breaks are first recognized by specialized proteins that initiate a signal transduction cascade that modulates the cell cycle and results in the repair of the breaks by homologous recombination (HR). Protein signaling in response to double strand breaks involves phosphorylation and ubiquitination of chromatin and a variety of associated proteins. Here we review the emerging structural principles that underlie how post-translational protein modifications control protein signaling that emanates from these DNA lesions.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Transdução de Sinais/genética , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Recombinação Homóloga/genética , Recombinação Homóloga/fisiologia , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Estrutura Terciária de Proteína/fisiologia , Transdução de Sinais/fisiologia
3.
Protein Sci ; 20(1): 160-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21082706

RESUMO

The crystal structure of Phenylalanyl-tRNA synthetase from E. coli (EcPheRS), a class II aminoacyl-tRNA synthetase, complexed with phenylalanine and AMP was determined at 3.05 Å resolution. EcPheRS is a (αß)2 heterotetramer: the αß heterodimer of EcPheRS consists of 11 structural domains. Three of them: the N-terminus, A1 and A2 belong to the α-subunit and B1-B8 domains to the ß subunit. The structure of EcPheRS revealed that architecture of four helix-bundle interface, characteristic of class IIc heterotetrameric aaRSs, is changed: each of the two long helices belonging to CLM transformed into the coil-short helix structural fragments. The N-terminal domain of the α-subunit in EcPheRS forms compact triple helix domain. This observation is contradictory to the structure of the apo form of TtPheRS, where N-terminal domain was not detected in the electron density map. Comparison of EcPheRS structure with TtPheRS has uncovered significant rearrangements of the structural domains involved in tRNA(Phe) binding/translocation. As it follows from modeling experiments, to achieve a tighter fit with anticodon loop of tRNA, a shift of ∼5 Å is required for C-terminal domain B8, and of ∼6 to 7 Å for the whole N terminus. EcPheRSs have emerged as an important target for the incorporation of novel amino acids into genetic code. Further progress in design of novel compounds is anticipated based on the structural data of EcPheRS.


Assuntos
Monofosfato de Adenosina/química , Proteínas de Escherichia coli/química , Fenilalanina-tRNA Ligase/química , Fenilalanina/química , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
4.
Proc Natl Acad Sci U S A ; 107(5): 1983-8, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20080686

RESUMO

Crystallographic analysis revealed that the 17-member polyketide antibiotic lankacidin produced by Streptomyces rochei binds at the peptidyl transferase center of the eubacterial large ribosomal subunit. Biochemical and functional studies verified this finding and showed interference with peptide bond formation. Chemical probing indicated that the macrolide lankamycin, a second antibiotic produced by the same species, binds at a neighboring site, at the ribosome exit tunnel. These two antibiotics can bind to the ribosome simultaneously and display synergy in inhibiting bacterial growth. The binding site of lankacidin and lankamycin partially overlap with the binding site of another pair of synergistic antibiotics, the streptogramins. Thus, at least two pairs of structurally dissimilar compounds have been selected in the course of evolution to act synergistically by targeting neighboring sites in the ribosome. These results underscore the importance of the corresponding ribosomal sites for development of clinically relevant synergistic antibiotics and demonstrate the utility of structural analysis for providing new directions for drug discovery.


Assuntos
Antibacterianos/química , Antibacterianos/metabolismo , Macrolídeos/química , Macrolídeos/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Deinococcus/química , Deinococcus/metabolismo , Descoberta de Drogas , Sinergismo Farmacológico , Eritromicina/análogos & derivados , Eritromicina/química , Eritromicina/metabolismo , Modelos Moleculares , Estrutura Molecular , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...