Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Microbiol ; 80: 102511, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002491

RESUMO

Microbial communities are fundamental to every ecosystem on Earth and hold great potential for biotechnological applications. However, their complex nature hampers our ability to study and understand them. A common strategy to tackle this complexity is to abstract the community into a network of interactions between its members - a phenomenological description that captures the overall effects of various chemical and physical mechanisms that underpin these relationships. This approach has proven useful for numerous applications in microbial ecology, including predicting community dynamics and stability and understanding community assembly and evolution. However, care is required in quantifying and interpreting interactions. Here, we clarify the concept of an interaction and discuss when interaction measurements are useful despite their context-dependent nature. Furthermore, we categorize different approaches for quantifying interactions, highlighting the research objectives each approach is best suited for.

2.
Nat Commun ; 12(1): 2891, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33976223

RESUMO

Managing and engineering microbial communities relies on the ability to predict their composition. While progress has been made on predicting compositions on short, ecological timescales, there is still little work aimed at predicting compositions on evolutionary timescales. Therefore, it is still unknown for how long communities typically remain stable after reaching ecological equilibrium, and how repeatable and predictable are changes when they occur. Here, we address this knowledge gap by tracking the composition of 87 two- and three-species bacterial communities, with 3-18 replicates each, for ~400 generations. We find that community composition typically changed during evolution, but that the composition of replicate communities remained similar. Furthermore, these changes were predictable in a bottom-up approach-changes in the composition of trios were consistent with those that occurred in pairs during coevolution. Our results demonstrate that simple assembly rules can hold even on evolutionary timescales, suggesting it may be possible to forecast the evolution of microbial communities.


Assuntos
Bactérias/genética , Evolução Molecular , Microbiota/genética , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Divisão Celular/genética , Modelos Genéticos , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...