Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38895397

RESUMO

Mapping neurotransmitter identities to neurons is key to understanding information flow in a nervous system. It also provides valuable entry points for studying the development and plasticity of neuronal identity features. In the C. elegans nervous system, neurotransmitter identities have been largely assigned by expression pattern analysis of neurotransmitter pathway genes that encode neurotransmitter biosynthetic enzymes or transporters. However, many of these assignments have relied on multicopy reporter transgenes that may lack relevant cis-regulatory information and therefore may not provide an accurate picture of neurotransmitter usage. We analyzed the expression patterns of 16 CRISPR/Cas9-engineered knock-in reporter strains for all main types of neurotransmitters in C. elegans (glutamate, acetylcholine, GABA, serotonin, dopamine, tyramine, and octopamine) in both the hermaphrodite and the male. Our analysis reveals novel sites of expression of these neurotransmitter systems within both neurons and glia, as well as non-neural cells. The resulting expression atlas defines neurons that may be exclusively neuropeptidergic, substantially expands the repertoire of neurons capable of co-transmitting multiple neurotransmitters, and identifies novel neurons that uptake monoaminergic neurotransmitters. Furthermore, we also observed unusual co-expression patterns of monoaminergic synthesis pathway genes, suggesting the existence of novel monoaminergic transmitters. Our analysis results in what constitutes the most extensive whole-animal-wide map of neurotransmitter usage to date, paving the way for a better understanding of neuronal communication and neuronal identity specification in C. elegans.

2.
Stem Cells Dev ; 32(19-20): 606-621, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37551982

RESUMO

The mature brain contains an incredible number and diversity of cells that are produced and maintained by heterogeneous pools of neural stem cells (NSCs). Two distinct types of NSCs exist in the developing and adult mouse brain: Glial Fibrillary Acidic Protein (GFAP)-negative primitive (p)NSCs and downstream GFAP-positive definitive (d)NSCs. To better understand the embryonic functions of NSCs, we performed clonal lineage tracing within neurospheres grown from either pNSCs or dNSCs to enrich for their most immediate downstream neural progenitor cells (NPCs). These clonal progenitor lineage tracing data allowed us to construct a hierarchy of progenitor subtypes downstream of pNSCs and dNSCs that were then validated using single-cell transcriptomics. Further, we identify Nexn as required for neuronal specification from neuron/astrocyte progenitor cells downstream of rare pNSCs. Combined, these data provide single-cell resolution of NPC lineages downstream of rare pNSCs that likely would be missed from population-level analyses in vivo.


Assuntos
Células-Tronco Neurais , Camundongos , Animais , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo , Astrócitos/metabolismo , Diferenciação Celular/genética
3.
Proc Natl Acad Sci U S A ; 119(31): e2116957119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878038

RESUMO

In the mammalian olfactory system, cross-talk between olfactory signals is minimized through physical isolation: individual neurons express one or few olfactory receptors among those encoded in the genome. Physical isolation allows for segregation of stimuli during signal transduction; however, in the nematode worm Caenorhabditis elegans, ∼1,300 olfactory receptors are primarily expressed in only 32 neurons, precluding this strategy. Here, we report genetic and behavioral evidence that ß-arrestin-mediated desensitization of olfactory receptors, working downstream of the kinase GRK-1, enables discrimination between intraneuronal olfactory stimuli. Our findings suggest that C. elegans exploits ß-arrestin desensitization to maximize responsiveness to novel odors, allowing for behaviorally appropriate responses to olfactory stimuli despite the large number of olfactory receptors signaling in single cells. This represents a fundamentally different solution to the problem of olfactory discrimination than that which evolved in mammals, allowing for economical use of a limited number of sensory neurons.


Assuntos
Proteínas de Caenorhabditis elegans , Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Arrestina , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mamíferos/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Receptores Odorantes/genética , Células Receptoras Sensoriais/metabolismo , beta-Arrestina 1 , beta-Arrestinas
4.
eNeuro ; 6(4)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31371455

RESUMO

Associative learning and sensory integration are two behavioral processes that involve the sensation and processing of stimuli followed by an altered behavioral response to these stimuli, with learning requiring memory formation and retrieval. We found that the cellular and molecular actions of scd-2 dissociate sensory integration and associative learning. This was discovered through investigation of a Caenorhabditis elegans mutation (lrn-2 (mm99)) affecting both processes. After mapping and sequencing, lrn-2 was found to be allelic to the gene, scd-2scd-2-mediated associative learning and sensory integration operate in separate neurons as separate processes. We also find that memories can form from associations that are processed and stored independently from the integration of stimuli preceding an immediate behavioral decision.


Assuntos
Aprendizagem por Associação/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Neurônios/fisiologia , Proteínas Tirosina Quinases/fisiologia , Sensação/fisiologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Mutação , Proteínas Tirosina Quinases/genética
5.
Sci Rep ; 9(1): 2371, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787354

RESUMO

Higher-order conditioning phenomena, including context conditioning and blocking, occur when conditioning to one set of stimuli interacts with conditioning to a second set of stimuli to modulate the strength of the resultant memories. Here we analyze higher-order conditioning in the nematode worm Caenorhabditis elegans, demonstrating for the first time the presence of blocking in this animal, and dissociating it from context conditioning. We present an initial genetic dissection of these phenomena in a model benzaldehyde/NH4Cl aversive learning system, and suggest that blocking may involve an alteration of memory retrieval rather than storage. These findings offer a fundamentally different explanation for blocking than traditional explanations, and position C. elegans as a powerful model organism for the study of higher order conditioning.


Assuntos
Aprendizagem/fisiologia , Memória de Longo Prazo/fisiologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Condicionamento Clássico/fisiologia , Memória/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...