Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Proc Natl Acad Sci U S A ; 120(29): e2305871120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428925

RESUMO

Larvae of the genus Megalopyge (Lepidoptera: Zygaenoidea: Megalopygidae), known as asp or puss caterpillars, produce defensive venoms that cause severe pain. Here, we present the anatomy, chemistry, and mode of action of the venom systems of caterpillars of two megalopygid species, the Southern flannel moth Megalopyge opercularis and the black-waved flannel moth Megalopyge crispata. We show that megalopygid venom is produced in secretory cells that lie beneath the cuticle and are connected to the venom spines by canals. Megalopygid venoms consist of large aerolysin-like pore-forming toxins, which we have named megalysins, and a small number of peptides. The venom system differs markedly from those of previously studied venomous zygaenoids of the family Limacodidae, suggestive of an independent origin. Megalopygid venom potently activates mammalian sensory neurons via membrane permeabilization and induces sustained spontaneous pain behavior and paw swelling in mice. These bioactivities are ablated by treatment with heat, organic solvents, or proteases, indicating that they are mediated by larger proteins such as the megalysins. We show that the megalysins were recruited as venom toxins in the Megalopygidae following horizontal transfer of genes from bacteria to the ancestors of ditrysian Lepidoptera. Megalopygids have recruited aerolysin-like proteins as venom toxins convergently with centipedes, cnidarians, and fish. This study highlights the role of horizontal gene transfer in venom evolution.


Assuntos
Mordeduras e Picadas , Mariposas , Toxinas Biológicas , Animais , Camundongos , Transferência Genética Horizontal , Mariposas/genética , Larva/genética , Peçonhas , Dor , Mamíferos
3.
Oecologia ; 198(4): 865-875, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34999943

RESUMO

Environmentally cued germination may play an important role in promoting coexistence in Mediterranean annual plant systems if it causes niche differentiation across heterogeneous microsite conditions. In this study, we tested how microsite conditions experienced by seeds in the field and light conditions in the laboratory influenced germination in 12 common annual plant species occurring in the understorey of the York gum-jam woodlands in southwest Western Australia. Specifically, we hypothesized that if germination promotes spatial niche differentiation, then we should observe species-specific germination responses to light. In addition, we hypothesized that species' laboratory germination response may depend on the microsite conditions experienced by seeds while buried. We tested the laboratory germination response of seeds under diurnally fluctuating light and complete darkness, which were collected from microsites spanning local-scale environmental gradients known to influence community structure in this system. We found that seeds of 6 out of the 12 focal species exhibited significant positive germination responses to light, but that the magnitude of these responses varied greatly with the relative light requirement for germination ranging from 0.51 to 0.86 for these species. In addition, germination increased significantly across a gradient of canopy cover for two species, but we found little evidence to suggest that species' relative light requirement for germination varied depending on seed bank microsite conditions. Our results suggest that variability in light availability may promote coexistence in this system and that the microsite conditions seeds experience in the intra-growing season period can further nuance species germination behaviour.


Assuntos
Germinação , Sementes , Austrália , Germinação/fisiologia , Luz , Dormência de Plantas/fisiologia , Estações do Ano , Sementes/fisiologia , Temperatura
4.
J Thorac Oncol ; 17(2): 309-323, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34626838

RESUMO

INTRODUCTION: Final overall survival (OS) analyses are presented for EGFR mutations and liver or brain metastases subgroups in the phase 3 IMpower150 study (NCT02366143) evaluating atezolizumab plus bevacizumab plus carboplatin and paclitaxel (ABCP) or atezolizumab plus carboplatin and paclitaxel (ACP) versus bevacizumab plus carboplatin and paclitaxel (BCP). METHODS: Overall, 1202 patients (intention-to-treat population) with chemotherapy-naive, metastatic, nonsquamous NSCLC were randomized to ABCP, ACP, or BCP. Patients with treated, stable brain metastases were permitted. OS was evaluated in EGFR mutations and baseline liver metastases subgroups; rate and time to development of new brain metastases were evaluated in the intention-to-treat patients. RESULTS: At data cutoff (September 13, 2019; median follow-up, 39.3 mo), OS improvements were sustained with ABCP versus BCP in sensitizing EGFR mutations (all: hazard ratio [HR] = 0.60; 95% confidence interval [CI]: 0.31-1.14; previous tyrosine kinase inhibitor [TKI]: HR = 0.74; 95% CI: 0.38-1.46) and baseline liver metastases (HR = 0.68; 95% CI: 0.45-1.02) subgroups. ACP did not have survival benefit versus BCP in sensitizing EGFR mutations (all: HR = 1.0; 95% CI: 0.57-1.74; previous TKI: HR = 1.22; 95% CI: 0.68-2.22) or liver metastases (HR = 1.01; 95% CI: 0.68-1.51) subgroups. Overall, 100 patients (8.3%) developed new brain metastases. Although not formally evaluated, an improvement toward delayed time to development was found with ABCP versus BCP (HR = 0.68; 95% CI: 0.39-1.19). CONCLUSIONS: This final exploratory analysis revealed OS benefits for ABCP versus BCP in patients with sensitizing EGFR mutations, including those with previous TKI failures, and with liver metastases, although these results should be interpreted with caution. The impact of ABCP on delaying the development of new brain lesions requires further investigation.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Bevacizumab/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Encéfalo/patologia , Neoplasias Encefálicas/secundário , Carboplatina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Humanos , Fígado/patologia , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação
5.
Sci Total Environ ; 798: 149096, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34340083

RESUMO

Seed-based restoration often experiences poor success due to a range of edaphic and biotic issues. Seed enhancement technologies (SETs) are a novel approach that can alleviate these pressures and improve restoration success. Broadly, SETs have been reviewed for agricultural and horticultural purposes, for specific types of SETs such as coating or priming, or for focal ecosystems. However, information is lacking for SETs within a restoration focused context, and how they are being used to alleviate certain barriers. This review aimed to synthesise the current literature on SETs to understand what SETs are being tested, in which sectors and locations they are being tested, what issues are faced within restoration using SETs, and how SETs are being used to approach these issues. Priming was highlighted as the main SET investigated. Inoculation, pesticide application and magnetic fields were also commonly tested (SETs we termed 'prospective techniques'). SET research mainly occurred in the agricultural sector. More recently, other sectors, such as restoration and rangeland management, have increased efforts into SET research. The restoration sector has focused on extruded pelleting and coating (with activated carbon), in combination with herbicide application, to overcome invasive species, and coating with certain additives to alleviate edaphic issues. Other sectors outside restoration were largely focused on evaluating priming for overcoming these barriers. The majority of priming research has been completed on crop species and differences between these species and ecosystems must be considered in future restoration efforts that focus on native seed use. Generally, SETs require further refinement, including identifying ideal additives and their optimum concentrations to target certain issues, refining formulations for coating and extruded pelleting and developing flash flaming. A bet-hedging approach using multiple SETs and/or combinations of SETs may be advantageous in overcoming a wide range of barriers in seed-based restoration.


Assuntos
Melhoramento Biomédico , Herbicidas , Agricultura , Ecossistema , Estudos Prospectivos
6.
Stud Hist Philos Sci ; 88: 193-208, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34218160

RESUMO

I discuss the relevance of the current predicament in cosmology to the debate over scientific realism. I argue that the existence of two, empirically successful but ontologically inconsistent cosmological theories presents difficulties for the realist position.


Assuntos
Existencialismo
7.
Ecol Appl ; 31(7): e02411, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34255387

RESUMO

Unseasonal fire occurrence is increasing globally, driven by climate change and other human activity. Changed timing of fire can inhibit postfire seedling recruitment through interactions with plant phenology (the timing of key processes, e.g., flower initiation, seed production, dispersal, germination), and therefore threaten the persistence of many plant species. Although empirical evidence from winter-rainfall ecosystems shows that optimal seedling recruitment is expected following summer and autumn (dry season) fires, we sought experimental evidence isolating the mechanisms of poor recruitment following unseasonal (wet season) fire. We implemented a seed-sowing experiment using nine species native to fire-prone, Mediterranean-climate woodlands in southwestern Australia to emulate the timing of postfire recruitment and test key mechanisms of fire seasonality effects. For seeds sown during months when fire is unseasonal (i.e., August-September: end of the wet winter season), seedling recruitment was reduced by up to 99% relative to seeds sown during seasonal fire months (i.e., May-June: end of the dry summer season) because of varying seed persistence, seedling emergence, and seedling survival. We found that up to 70 times more seedlings emerged when seeds were sown during seasonal fire months compared to when seeds were sown during unseasonal fire months. The few seedlings that emerged from unseasonal sowings all died with the onset of the dry season. Of the seeds that failed to germinate from unseasonal sowings, only 2% survived exposure on the soil surface over the ensuing hot and dry summer. Our experimental results demonstrate the potential for unseasonal fire to inhibit seedling recruitment via impacts on pregermination seed persistence and seedling establishment. As ongoing climate change lengthens fire seasons (i.e., unseasonal wildfires become more common) and managed fires are implemented further outside historically typical fire seasons, postfire seedling recruitment may become more vulnerable to failure, causing shifts in plant community composition towards those with fewer species solely dependent on seeds for regeneration.


Assuntos
Incêndios , Plântula , Ecossistema , Germinação , Sementes
8.
Ecology ; 102(9): e03450, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34165784

RESUMO

Ecosystems are defined, studied, and managed according to boundaries constructed to conceptualize patterns of interest at a certain scale and scope. The distinction between ecosystems becomes obscured when resources from multiple origins cross porous boundaries and are assimilated into food webs through repeated trophic transfers. Ecosystem compartments can define bounded localities in a heterogeneous landscape that simultaneously retain and exchange energy in the form of organic matter. Here we developed and tested a framework to quantify reciprocal reliance on cross-boundary resource exchange and calculate the contribution of primary production from adjacent ecosystem compartments cycling through food webs to support consumers at different trophic levels. Under this framework, an integrated ecosystem can be measured and designated when the boundary between spatially distinct compartments is permeable and the bidirectional exchange of resources contributes significantly to sustaining both food webs. Using a desert river and riparian zone as a case study, we demonstrate that resources exchanged across the aquatic-riparian boundary cycle through multiple trophic levels. Furthermore, predators on both sides of the boundary were supported by externally produced resources to a similar extent, indicating this is a tightly integrated river-riparian ecosystem and that changes to either compartment will substantially impact the other. Using published data on lake ecosystems, we demonstrated that benthic and pelagic ecosystem compartments are likely not fully integrated, but differences between lakes could be used to test ecological hypotheses. Finally, we discuss how the integrated ecosystem framework could be applied in urban-preserve and field-forest ecosystems to address a broad range of ecological concepts. Because few systems function in complete isolation, this novel approach has application to research and management strategies globally as ecosystems continue to face novel pressures that precipitate cascading ecological repercussions well beyond a bounded system of focus.


Assuntos
Ecossistema , Cadeia Alimentar
9.
Viruses ; 13(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065985

RESUMO

Insects can become lethally infected by the oral intake of a number of insect-specific viruses. Virus infection commonly occurs in larvae, given their active feeding behaviour; however, older larvae often become resistant to oral viral infections. To investigate mechanisms that contribute to resistance throughout the larval development, we orally challenged Drosophila larvae at different stages of their development with Drosophila C virus (DCV, Dicistroviridae). Here, we showed that DCV-induced mortality is highest when infection initiates early in larval development and decreases the later in development the infection occurs. We then evaluated the peritrophic matrix as an antiviral barrier within the gut using a Crystallin-deficient fly line (Crys-/-), whose PM is weakened and becomes more permeable to DCV-sized particles as the larva ages. This phenotype correlated with increasing mortality the later in development oral challenge occurred. Lastly, we tested in vitro the infectivity of DCV after incubation at pH conditions that may occur in the midgut. DCV virions were stable in a pH range between 3.0 and 10.5, but their infectivity decreased at least 100-fold below (1.0) and above (12.0) this range. We did not observe such acidic conditions in recently hatched larvae. We hypothesise that, in Drosophila larvae, the PM is essential for containing ingested virions separated from the gut epithelium, while highly acidic conditions inactivate the majority of the virions as they transit.


Assuntos
Dicistroviridae/patogenicidade , Sistema Digestório/virologia , Drosophila/virologia , Larva/virologia , Viroses/prevenção & controle , Animais , Sistema Digestório/química , Feminino , Concentração de Íons de Hidrogênio , Larva/anatomia & histologia , Masculino
10.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33893140

RESUMO

Venoms have evolved independently several times in Lepidoptera. Limacodidae is a family with worldwide distribution, many of which are venomous in the larval stage, but the composition and mode of action of their venom is unknown. Here, we use imaging technologies, transcriptomics, proteomics, and functional assays to provide a holistic picture of the venom system of a limacodid caterpillar, Doratifera vulnerans Contrary to dogma that defensive venoms are simple in composition, D. vulnerans produces a complex venom containing 151 proteinaceous toxins spanning 59 families, most of which are peptides <10 kDa. Three of the most abundant families of venom peptides (vulnericins) are 1) analogs of the adipokinetic hormone/corazonin-related neuropeptide, some of which are picomolar agonists of the endogenous insect receptor; 2) linear cationic peptides derived from cecropin, an insect innate immune peptide that kills bacteria and parasites by disrupting cell membranes; and 3) disulfide-rich knottins similar to those that dominate spider venoms. Using venom fractionation and a suite of synthetic venom peptides, we demonstrate that the cecropin-like peptides are responsible for the dominant pain effect observed in mammalian in vitro and in vivo nociception assays and therefore are likely to cause pain after natural envenomations by D. vulnerans Our data reveal convergent molecular evolution between limacodids, hymenopterans, and arachnids and demonstrate that lepidopteran venoms are an untapped source of novel bioactive peptides.


Assuntos
Venenos de Artrópodes/química , Proteínas de Insetos/química , Lepidópteros/química , Neuropeptídeos/química , Dor/genética , Animais , Venenos de Artrópodes/genética , Evolução Molecular , Proteínas de Insetos/genética , Mariposas/química , Neuropeptídeos/genética , Peptídeos/química , Peptídeos/genética , Proteômica , Venenos de Aranha/química , Venenos de Aranha/genética , Transcriptoma/genética
11.
Appl Environ Microbiol ; 87(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33355113

RESUMO

Gut microbes play an important role in the biology and evolution of insects. Australian native dung beetles (Scarabaeinae) present an opportunity to study gut microbiota in an evolutionary context as they come from two distinct phylogenetic lineages and some species in each lineage have secondarily adapted to alternative or broader diets. In this study, we characterised the hindgut bacterial communities found in 21 species of dung beetles across two lineages using 16S rRNA sequencing. We found that gut microbial diversity was more dependent on host phylogeny and gut morphology than specific dietary preferences or environment. In particular, gut microbial diversity was highest in the endemic, flightless genus Cephalodesmius that feeds on a broad range of composted organic matter. The hindgut of Cephalodesmius harbours a highly conserved core set of bacteria suggesting that the bacteria are symbiotic. Symbiosis is supported by the persistence of the core microbiota across isolated beetle populations and between species in the genus. A co-evolutionary relationship is supported by the expansion of the hindgut to form a fermentation chamber and the fermentative nature of the core microbes. In contrast, Australian species of the widespread dung beetle genus Onthophagus, specialise on a single food resource such as dung or fungus, exhibit minimal food processing behaviour, have a short, narrow hindgut and a variable gut microbiota with relatively few core bacterial taxa. A conserved, complex gut microbiota is hypothesised to be unnecessary for this highly mobile genus.IMPORTANCE Dung beetles are a very important part of an ecosystem because of their role in the removal and decomposition of vertebrate dung. It has been suspected that symbiotic gut bacteria facilitate this role, a hypothesis that we have explored with high throughput barcoding. We found that differences in hindgut morphology had the greatest effect on the bacterial community composition. Species with a hindgut fermentation chamber harboured a distinctly different hindgut community compared to those species with a narrow, undifferentiated hindgut. Diet and phylogeny were also associated with differences in gut community. Further understanding of the relationships between dung beetles and their gut microbes will provide insights into the evolution of their behaviours and how gut communities contribute to their fitness.

12.
Front Plant Sci ; 12: 795003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069650

RESUMO

Changes in fire regimes due to climate change and fire management practices are affecting the timing, length, and distribution of vegetation fires throughout the year. Plant species responses and tolerances to fire differ from season to season and are influenced by species-specific phenological processes. The ability of seeds to tolerate extreme temperatures associated with fire is one of these processes, with survival linked to seed moisture content at the time of exposure. As fire is more often occurring outside historic dry fire seasons, the probability of fire occurring when seeds are hydrated may also be increasing. In this study, we set out to understand the seasonal dynamics of seed hydration for seeds of Banksia woodland species, and how certain seed traits interact with environmental conditions to influence survival of high temperatures associated with fire. We measured the moisture content of seeds buried to 2 cm in the soil seed bank for four common native species and one invasive species on a weekly basis throughout 2017, along with soil moisture content and environmental correlates. We determined water sorption isotherms at 20°C for seeds of each species and used these functions to model weekly variation in seed water activity and predict when seeds are most sensitive to soil heating. Using Generalised additive models (GAMs), we were able to describe approximately 67% of the weekly variance in seed water activity and explored differences in seed hydration dynamics between species. Seed water activity was sufficiently high (i.e., ≥ 0.85 a w) so as to have created an increased risk of mortality if a fire had occurred during an almost continuous period between May and November in the study period (i.e., 2017). There were brief windows when seeds may have been in a dry state during early winter and late spring, and also when they may have been in a wet state during summer and late autumn. These data, and the associated analyses, provide an opportunity to develop approaches to minimize seed mortality during fire and maximize the seed bank response.

14.
Neuron ; 107(6): 1071-1079.e2, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32931755

RESUMO

Drosophila melanogaster is an established model for neuroscience research with relevance in biology and medicine. Until recently, research on the Drosophila brain was hindered by the lack of a complete and uniform nomenclature. Recognizing this, Ito et al. (2014) produced an authoritative nomenclature for the adult insect brain, using Drosophila as the reference. Here, we extend this nomenclature to the adult thoracic and abdominal neuromeres, the ventral nerve cord (VNC), to provide an anatomical description of this major component of the Drosophila nervous system. The VNC is the locus for the reception and integration of sensory information and involved in generating most of the locomotor actions that underlie fly behaviors. The aim is to create a nomenclature, definitions, and spatial boundaries for the Drosophila VNC that are consistent with other insects. The work establishes an anatomical framework that provides a powerful tool for analyzing the functional organization of the VNC.


Assuntos
Drosophila melanogaster/citologia , Gânglios dos Invertebrados/citologia , Rede Nervosa/citologia , Neurônios/classificação , Terminologia como Assunto , Animais , Linhagem da Célula , Drosophila melanogaster/fisiologia , Gânglios dos Invertebrados/fisiologia , Rede Nervosa/fisiologia , Neurônios/citologia , Neurônios/fisiologia
16.
J Exp Biol ; 223(Pt 15)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32611789

RESUMO

Arachnocampa larvae utilise bioluminescence to lure small arthropod prey into their web-like silk snares. The luciferin-luciferase light-producing reaction occurs in a specialised light organ composed of Malpighian tubule cells in association with a tracheal mass. The accepted model for bioluminescence regulation is that light is actively repressed during the non-glowing period and released when glowing through the night. The model is based upon foregoing observations that carbon dioxide (CO2) - a commonly used insect anaesthetic - produces elevated light output in whole, live larvae as well as isolated light organs. Alternative anaesthetics were reported to have a similar light-releasing effect. We set out to test this model in Arachnocampa flava larvae by exposing them to a range of anaesthetics and gas mixtures. The anaesthetics isoflurane, ethyl acetate and diethyl ether did not produce high bioluminescence responses in the same way as CO2 Ligation and dissection experiments localised the CO2 response to the light organ rather than it being a response to general anaesthesia. Exposure to hypoxia through the introduction of nitrogen gas combined with CO2 exposures highlighted that continuity between the longitudinal tracheal trunks and the light organ tracheal mass is necessary for recovery of the CO2-induced light response. The physiological basis of the CO2-induced bioluminescence increase remains unresolved, but is most likely related to access of oxygen to the photocytes. The results suggest that the repression model for bioluminescence control can be rejected. An alternative is proposed based on neural upregulation modulating bioluminescence intensity.


Assuntos
Dióxido de Carbono , Dípteros , Animais , Larva , Luminescência , Nematóceros
18.
Ecol Appl ; 30(1): e02005, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532056

RESUMO

More than a century of dam construction and water development in the western United States has led to extensive ecological alteration of rivers. Growing interest in improving river function is compelling practitioners to consider ecological restoration when managing dams and water extraction. We developed an Ecological Response Model (ERM) for the Cache la Poudre River, northern Colorado, USA, to illuminate effects of current and possible future water management and climate change. We used empirical data and modeled interactions among multiple ecosystem components to capture system-wide insights not possible with the unintegrated models commonly used in environmental assessments. The ERM results showed additional flow regime modification would further alter the structure and function of Poudre River aquatic and riparian ecosystems due to multiple and interacting stressors. Model predictions illustrated that specific peak flow magnitudes in spring and early summer are critical for substrate mobilization, dynamic channel morphology, and overbank flows, with strong subsequent effects on instream and riparian biota that varied seasonally and spatially, allowing exploration of nuanced management scenarios. Instream biological indicators benefitted from higher and more stable base flows and high peak flows, but stable base flows with low peak flows were only half as effective to increase indicators. Improving base flows while reducing peak flows, as currently proposed for the Cache la Poudre River, would further reduce ecosystem function. Modeling showed that even presently depleted annual flow volumes can achieve substantially different ecological outcomes in designed flow scenarios, while still supporting social demands. Model predictions demonstrated that implementing designed flows in a natural pattern, with attention to base and peak flows, may be needed to preserve or improve ecosystem function of the Poudre River. Improved regulatory policies would include preservation of ecosystem-level, flow-related processes and adaptive management when water development projects are considered.


Assuntos
Ecossistema , Rios , Mudança Climática , Colorado , Movimentos da Água
19.
Trends Ecol Evol ; 34(12): 1104-1117, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31399287

RESUMO

Altered fire regimes resulting from climate change and human activity threaten many terrestrial ecosystems. However, we lack a holistic and detailed understanding of the effects of altering one key fire regime component - season of fire. Altered fire seasonality can strongly affect post-fire recovery of plant populations through interactions with plant phenology. We identify seven key mechanisms of fire seasonality effects under a conceptual demographic framework and review evidence for these. We reveal negative impacts of altered fire seasonality and identify research gaps for mechanisms and climate types for future analyses of fire seasonality effects within the identified demographic framework. This framework and these mechanisms can inform critical decisions for conservation, land management, and fire management policy development globally.


Assuntos
Ecossistema , Incêndios , Mudança Climática , Atividades Humanas , Humanos , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...