Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8014): 1082-1090, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750354

RESUMO

Cell types with specialized functions fundamentally regulate animal behaviour, and yet the genetic mechanisms that underlie the emergence of novel cell types and their consequences for behaviour are not well understood1. Here we show that the monogamous oldfield mouse (Peromyscus polionotus) has recently evolved a novel cell type in the adrenal gland that expresses the enzyme AKR1C18, which converts progesterone into 20α-hydroxyprogesterone. We then demonstrate that 20α-hydroxyprogesterone is more abundant in oldfield mice, where it induces monogamous-typical parental behaviours, than in the closely related promiscuous deer mice (Peromyscus maniculatus). Using quantitative trait locus mapping in a cross between these species, we ultimately find interspecific genetic variation that drives expression of the nuclear protein GADD45A and the glycoprotein tenascin N, which contribute to the emergence and function of this cell type in oldfield mice. Our results provide an example by which the recent evolution of a new cell type in a gland outside the brain contributes to the evolution of social behaviour.


Assuntos
Glândulas Suprarrenais , Evolução Biológica , Comportamento Paterno , Peromyscus , Animais , Feminino , Masculino , 20-alfa-Di-Hidroprogesterona/metabolismo , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/enzimologia , Glândulas Suprarrenais/metabolismo , Estradiol Desidrogenases/genética , Estradiol Desidrogenases/metabolismo , Proteínas GADD45/genética , Variação Genética , Hibridização Genética , Peromyscus/classificação , Peromyscus/genética , Peromyscus/fisiologia , Progesterona/metabolismo , Locos de Características Quantitativas , Comportamento Social , Tenascina/genética
2.
PLoS One ; 17(10): e0276052, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36251655

RESUMO

Among species, parental behaviors vary in their magnitude, onset relative to reproduction, and sexual dimorphism. In deer mice (genus Peromyscus), while most species are promiscuous with low paternal care, monogamy and biparental care have evolved at least twice under different ecological conditions. Here, in a common laboratory setting, we monitored parental behaviors of males and females of two promiscuous (eastern deer mouse P. maniculatus and white-footed mouse P. leucopus) and two monogamous (oldfield mouse P. polionotus and California mouse P. californicus) species from before mating to after giving birth. In the promiscuous species, females showed parental behaviors largely after parturition, while males showed little parental care. In contrast, both sexes of monogamous species performed parental behaviors. However, while oldfield mice began to display parental behaviors before mating, California mice showed robust parental care behaviors only postpartum. These different parental-care trajectories in the two monogamous species align with their socioecology. Oldfield mice have overlapping home ranges with relatives, so infants they encounter, even if not their own, are likely to be closely related. By contrast, California mice disperse longer distances into exclusive territories with possibly unrelated neighbors, decreasing the inclusive fitness benefits of caring for unfamiliar pups before parenthood. Together, we find that patterns of parental behaviors in Peromyscus are consistent with predictions from inclusive fitness theory.


Assuntos
Peromyscus , Reprodução , Animais , Feminino , Masculino , Comportamento Paterno , Gravidez
3.
Genes Brain Behav ; 21(8): e12831, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220804

RESUMO

White-throated sparrows (Zonotrichia albicollis) offer a unique opportunity to connect genotype with behavioral phenotype. In this species, a rearrangement of the second chromosome is linked with territorial aggression; birds with a copy of this "supergene" rearrangement are more aggressive than those without it. The supergene has captured the gene VIP, which encodes vasoactive intestinal peptide, a neuromodulator that drives aggression in other songbirds. In white-throated sparrows, VIP expression is higher in the anterior hypothalamus of birds with the supergene than those without it, and expression of VIP in this region predicts the level of territorial aggression regardless of genotype. Here, we aimed to identify epigenetic mechanisms that could contribute to differential expression of VIP both in breeding adults, which exhibit morph differences in territorial aggression, and in nestlings, before territorial behavior develops. We extracted and bisulfite-converted DNA from samples of the hypothalamus in wild-caught adults and nestlings and used high-throughput sequencing to measure DNA methylation of a region upstream of the VIP start site. We found that the allele inside the supergene was less methylated than the alternative allele in both adults and nestlings. The differential methylation was attributed primarily to CpG sites that were shared between the alleles, not to polymorphic sites, which suggests that epigenetic regulation is occurring independently of the genetic differentiation within the supergene. This work represents an initial step toward understanding how epigenetic differentiation inside chromosomal inversions leads to the development of alternative behavioral phenotypes.


Assuntos
Pardais , Animais , Pardais/genética , Peptídeo Intestinal Vasoativo/genética , Comportamento Social , Alelos , Comportamento Animal/fisiologia , Metilação , Epigênese Genética
4.
Mol Ecol ; 30(14): 3453-3467, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33421223

RESUMO

Much of our knowledge on regulatory impacts of DNA methylation has come from laboratory-bred model organisms, which may not exhibit the full extent of variation found in wild populations. Here, we investigated naturally-occurring variation in DNA methylation in a wild avian species, the white-throated sparrow (Zonotrichia albicollis). This species offers exceptional opportunities for studying the link between genetic differentiation and phenotypic traits because of a nonrecombining chromosome pair linked to both plumage and behavioural phenotypes. Using novel single-nucleotide resolution methylation maps and gene expression data, we show that DNA methylation and the expression of DNA methyltransferases are significantly higher in adults than in nestlings. Genes for which DNA methylation varied between nestlings and adults were implicated in development and cell differentiation and were located throughout the genome. In contrast, differential methylation between plumage morphs was concentrated in the nonrecombining chromosome pair. Interestingly, a large number of CpGs on the nonrecombining chromosome, localized to transposable elements, have undergone dramatic loss of DNA methylation since the split of the ZAL2 and ZAL2m chromosomes. Changes in methylation predicted changes in gene expression for both chromosomes. In summary, we demonstrate changes in genome-wide DNA methylation that are associated with development and with specific functional categories of genes in white-throated sparrows. Moreover, we observe substantial DNA methylation reprogramming associated with the suppression of recombination, with implications for genome integrity and gene expression divergence. These results offer an unprecedented view of ongoing epigenetic reprogramming in a wild population.


Assuntos
Pardais , Animais , Cromossomos/genética , Metilação de DNA , Genoma/genética , Recombinação Genética , Pardais/genética
5.
Horm Behav ; 126: 104850, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32937166

RESUMO

The white-throated sparrow (Zonotrichia albicollis) offers unique opportunities to understand the adaptive value of supergenes, particularly their role in alternative phenotypes. In this species, alternative plumage morphs segregate with a nonrecombining segment of chromosome 2, which has been called a 'supergene'. The species mates disassortatively with respect to the supergene; that is, each breeding pair consists of one individual with it and one without it. This species has therefore been called the "bird with four sexes". The supergene segregates with a behavioral phenotype; birds with it are more aggressive and less parental than birds without it. Here, we review our efforts to identify the genes inside the supergene that are responsible for the behavioral polymorphism. The gene ESR1, which encodes estrogen receptor α, differs between the morphs and predicts both territorial and parental behavior. Variation in the regulatory regions of ESR1 causes an imbalance in expression of the two alleles, and the degree to which this imbalance favors the supergene allele predicts territorial singing. In heterozygotes, knockdown of ESR1 causes a phenotypic switch, from more aggressive to less aggressive. We recently showed that another gene important for social behavior, vasoactive intestinal peptide (VIP), is differentially expressed between the morphs and predicts territorial singing. We hypothesize that ESR1 and VIP contribute to behavior in a coordinated way and could represent co-adapted alleles. Because the supergene contains more than 1000 individual genes, this species provides rich possibilities for discovering alleles that work together to mediate life-history trade-offs and maximize the fitness of alternative complex phenotypes.


Assuntos
Comportamento Sexual Animal/fisiologia , Pardais/genética , Pardais/fisiologia , Agressão/fisiologia , Animais , Feminino , Estudos de Associação Genética/veterinária , Masculino , Fenótipo , Reprodução/fisiologia , Caracteres Sexuais , Comportamento Social , Especificidade da Espécie , Territorialidade
6.
Proc Natl Acad Sci U S A ; 117(35): 21673-21680, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817554

RESUMO

Behavioral evolution relies on genetic changes, yet few behaviors can be traced to specific genetic sequences in vertebrates. Here we provide experimental evidence showing that differentiation of a single gene has contributed to the evolution of divergent behavioral phenotypes in the white-throated sparrow, a common backyard songbird. In this species, a series of chromosomal inversions has formed a supergene that segregates with an aggressive phenotype. The supergene has captured ESR1, the gene that encodes estrogen receptor α (ERα); as a result, this gene is accumulating changes that now distinguish the supergene allele from the standard allele. Our results show that in birds of the more aggressive phenotype, ERα knockdown caused a phenotypic change to that of the less aggressive phenotype. We next showed that in a free-living population, aggression is predicted by allelic imbalance favoring the supergene allele. Finally, we identified cis-regulatory features, both genetic and epigenetic, that explain the allelic imbalance. This work provides a rare illustration of how genotypic divergence has led to behavioral phenotypic divergence in a vertebrate.


Assuntos
Agressão/fisiologia , Receptor alfa de Estrogênio/genética , Pardais/genética , Animais , Comportamento Animal , Inversão Cromossômica/genética , Estrogênios/genética , Estrogênios/metabolismo , Feminino , Genótipo , Masculino , Fenótipo , Receptores de Estrogênio/genética , Comportamento Social
7.
Horm Behav ; 104: 41-51, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29605636

RESUMO

Contribution to Special Issue on Fast effects of steroids. 17ß-estradiol (E2) has numerous rapid effects on the brain and behavior. This review focuses on the rapid effects of E2 on aggression, an important social behavior, in songbirds. First, we highlight the contributions of studies on song sparrows, which reveal that seasonal changes in the environment profoundly influence the capacity of E2 to rapidly alter aggressive behavior. E2 administration to male song sparrows increases aggression within 20 min in the non-breeding season, but not in the breeding season. Furthermore, E2 rapidly modulates several phosphoproteins in the song sparrow brain. In particular, E2 rapidly affects pCREB in the medial preoptic nucleus, in the non-breeding season only. Second, we describe studies of the white-throated sparrow, which reveal how a genetic polymorphism may influence the rapid effects of E2 on aggression. In this species, a chromosomal rearrangement that includes ESR1, which encodes estrogen receptor α (ERα), affects ERα expression in the brain and the ability of E2 to rapidly promote aggression. Third, we summarize studies showing that aggressive interactions rapidly affect levels of E2 and other steroids, both in the blood and in specific brain regions, and the emerging potential for steroid profiling by liquid chromatography tandem mass spectrometry (LC-MS/MS). Such studies of songbirds demonstrate the value of an ethologically informed approach, in order to reveal how steroids act rapidly on the brain to alter naturally-occurring behavior.


Assuntos
Agressão/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Estradiol/farmacologia , Aves Canoras/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Masculino , Estações do Ano , Comportamento Social , Fatores de Tempo
8.
Exp Gerontol ; 103: 35-46, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29269268

RESUMO

Perivascular stromal cells, including mesenchymal stem/stromal cells (MSCs), secrete paracrine factor in response to exercise training that can facilitate improvements in muscle remodeling. This study was designed to test the capacity for muscle-resident MSCs (mMSCs) isolated from young mice to release regenerative proteins in response to mechanical strain in vitro, and subsequently determine the extent to which strain-stimulated mMSCs can enhance skeletal muscle and cognitive performance in a mouse model of uncomplicated aging. Protein arrays confirmed a robust increase in protein release at 24h following an acute bout of mechanical strain in vitro (10%, 1Hz, 5h) compared to non-strain controls. Aged (24month old), C57BL/6 mice were provided bilateral intramuscular injection of saline, non-strain control mMSCs, or mMSCs subjected to a single bout of mechanical strain in vitro (4×104). No significant changes were observed in muscle weight, myofiber size, maximal force, or satellite cell quantity at 1 or 4wks between groups. Peripheral perfusion was significantly increased in muscle at 4wks post-mMSC injection (p<0.05), yet no difference was noted between control and preconditioned mMSCs. Intramuscular injection of preconditioned mMSCs increased the number of new neurons and astrocytes in the dentate gyrus of the hippocampus compared to both control groups (p<0.05), with a trend toward an increase in water maze performance noted (p=0.07). Results from this study demonstrate that acute injection of exogenously stimulated muscle-resident stromal cells do not robustly impact aged muscle structure and function, yet increase the survival of new neurons in the hippocampus.


Assuntos
Envelhecimento/fisiologia , Transplante de Células-Tronco Mesenquimais , Músculo Esquelético/fisiologia , Neurônios/fisiologia , Animais , Feminino , Hipocampo/patologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Condicionamento Físico Animal , Estresse Mecânico
9.
Horm Behav ; 98: 210-218, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29277700

RESUMO

The white-throated sparrow (Zonotrichia albicollis) represents a powerful model in behavioral neuroendocrinology because it occurs in two plumage morphs that differ with respect to steroid-dependent social behaviors. Birds of the white-striped (WS) morph engage in more territorial aggression than do birds of the tan-striped (TS) morph, and the TS birds engage in more parenting behavior. This behavioral polymorphism is caused by a chromosomal inversion that has captured many genes, including estrogen receptor alpha (ERα). In this study, we tested the hypothesis that morph differences in aggression might be explained by differential sensitivity to estradiol (E2). We administered E2 non-invasively to non-breeding white-throated sparrows and quantified aggression toward a conspecific 10 min later. E2 administration rapidly increased aggression in WS birds but not TS birds, consistent with our hypothesis that differential sensitivity to E2 may at least partially explain morph differences in aggression. To query the site of E2 action in the brain, we administered E2 and quantified Egr-1 expression in brain regions in which expression of ERα is known to differ between the morphs. E2 treatment decreased Egr-1 immunoreactivity in nucleus taeniae of the amygdala, but this effect did not depend on morph. Overall, our results support a role for differential effects of E2 on aggression in the two morphs, but more research will be needed to determine the neuroanatomical site of action.


Assuntos
Agressão/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Pardais/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Dominação-Subordinação , Receptor alfa de Estrogênio/metabolismo , Genótipo , Masculino , Poder Familiar , Polimorfismo Genético/fisiologia , Comportamento Social , Pardais/genética
10.
Behav Brain Res ; 280: 62-71, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25435316

RESUMO

Moderate levels of aerobic exercise broadly enhance cognition throughout the lifespan. One hypothesized contributing mechanism is increased adult hippocampal neurogenesis. Recently, we measured the effects of voluntary wheel running on adult hippocampal neurogenesis in 12 different mouse strains, and found increased neurogenesis in all strains, ranging from 2- to 5-fold depending on the strain. The purpose of this study was to determine the extent to which increased neurogenesis from wheel running is associated with enhanced performance on the water maze for 5 of the 12 strains, chosen based on their levels of neurogenesis observed in the previous study (C57BL/6 J, 129S1/SvImJ, B6129SF1/J, DBA/2 J, and B6D2F1/J). Mice were housed with or without a running wheels for 30 days then tested for learning and memory on the plus water maze, adapted for multiple strains, and rotarod test of motor performance. The first 10 days, animals were injected with BrdU to label dividing cells. After behavioral testing animals were euthanized to measure adult hippocampal neurogenesis using standard methods. Levels of neurogenesis depended on strain but all mice had a similar increase in neurogenesis in response to exercise. All mice acquired the water maze but performance depended on strain. Exercise improved water maze performance in all strains to a similar degree. Rotarod performance depended on strain. Exercise improved rotarod performance only in DBA/2 J and B6D2F1/J mice. Taken together, results demonstrate that despite different levels of neurogenesis, memory performance and motor coordination in these mouse strains, all strains have the capacity to increase neurogenesis and improve learning on the water maze through voluntary wheel running.


Assuntos
Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos/fisiologia , Camundongos Endogâmicos/psicologia , Atividade Motora/fisiologia , Neurogênese/fisiologia , Animais , Bromodesoxiuridina , Abrigo para Animais , Masculino , Camundongos da Linhagem 129/fisiologia , Camundongos da Linhagem 129/psicologia , Camundongos Endogâmicos C57BL/fisiologia , Camundongos Endogâmicos C57BL/psicologia , Camundongos Endogâmicos DBA/fisiologia , Camundongos Endogâmicos DBA/psicologia , Teste de Desempenho do Rota-Rod , Corrida/fisiologia , Especificidade da Espécie , Natação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...