Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(22): 23782-23792, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38854584

RESUMO

In this study, we conducted first-principles calculations interfaced with Boltzmann transport theory to examine the carrier-dependent thermoelectric properties of CrS2-x Te x (x: 0, 1, 2) dichalcogenides monolayers. We conducted a systematic analysis of the structural, phonon band structures, elastic properties, electronic structures, and thermoelectric properties, of electron (e) and hole (h) doped CrS2-x Te x (x: 0, 1, 2) dichalcogenides monolayers. The studied 2D TMDCs exhibit structural stability, as indicated by the negative formation energy. Additionally, the phonon band structures indicate no negative frequencies along any wave vector, confirming the dynamic stability of the CrS2-x Te x monolayers. CrS2 and CrTe2 monolayers are semiconductors with direct bandgaps of 1.01 and 0.67 eV, respectively. A Janus CrSTe monolayer has a smaller bandgap of 0.21 eV. Temperatures range between 300 and 500 K, and concentrations of e(h) doped in the range of 1.0 × 1018-1.0 × 1020 cm-3 are used to compute the thermoelectric transport coefficients. The low lattice thermal conductivity is predicted for the studied compounds, among which Janus CrSTe and CrTe2 have the minimum value of κlat ≈ 1 W/mK @ 700 K. The figure-of-merit ZT projected value at the optimal e(h) doping concentration for the CrS2 monolayer is as high as 0.07 (0.09) at 500 K. Our findings demonstrate how to design improved thermoelectric materials suitable for various thermoelectric devices.

2.
Heliyon ; 10(10): e30927, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38779003

RESUMO

The purpose of this study was to synthesize ecofriendly nano-composite in which agricultural waste (seeds of Tamarindus indica) was used to synthesize tamarind seed polysaccharides (TSP) and its composite with copper nanoparticles (Cu-NPs) for the purpose of green and clean environment as well as reduction of green-house gases. Confirmation of extracted TSP, synthesized nanocomposite was carried out using FTIR, SEM, PXRD and EDX techniques. In FTIR analysis TSP gives a strong broad peak at 3331 cm-1 due to -OH group and in case of composite its intensity is reduced which might be due to the interactions between -OH and Cu+2 ions. SEM analysis gives that TSP have irregular and rough surface while Cu-NPs exhibited spherical morphology and composite showed clustering of spherical shape to rough surface. EDX analysis quantitatively represented copper having atomic ratio 0.57 % which confirms the synthesis of composite. Furthermore, synthesized composite demonstrated excellent antibacterial activity against gram-positive (S.aureus) and gram-negative bacteria (E.coli) even greater than standard medicine (ciprofloxacin). From this study it was revealed that agriculture waste can be utilized to make environment green as well as synthesized composite from agricultural waste seed also displayed excellent antimicrobial activities which directs that they can be utilized in medical field. This study aims to assess the antimicrobial properties of the nanocomposite, aiming to contribute to the development of effective antimicrobial agents. Through these objectives, the research seeks to bridge the gap between green technology and antimicrobial efficacy, offering a promising avenue for both environmental conservation and healthcare advancements.

3.
Enzyme Microb Technol ; 162: 110133, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36152593

RESUMO

Recent advancements in biorefinery processes necessitate search for cost effective and thermostable cellulases. This study was designed to characterize the cellulase obtained from a thermophilic bacterium, Neobacillus sedimentimangrovi UE25. A combined pretreatment of NaOH and methyltrioctylammonium chloride was given to sugarcane bagasse (SB) for lignin removal and the pretreated SB was utilized as a carbon source for the cellulase production. The thermostable cellulase thus obtained was characterized by adopting central composite design which has not been reported earlier for this purpose. Cellulase showed its maximum activity at pH 7 and temperature 60 â„ƒ and it remained active in the presence of many salts and detergents. Endoglucanase (EG) was found to be stable for 30 min at 80 â„ƒ. The purification of EG by using DEAE column yielded specific activity and purification fold of 365.866 IU mg-1 and 4.264, respectively. The purified EG had a molecular weight of ∼45 kDa. End product tolerance of EG was also evident, as an activity of 228.57 IU mL-1 was observed in the presence of 60 mM glucose which revealed that it does not lose its activity upon accumulation of end-product when the reaction is prolonged. The purified EG exhibited Vmax and Km of 294 U mL-1 min-1 and 36 µM, respectively, in the presence of 60 mM glucose. This novel thermostable cellulase can finds its applications in industrial sector.


Assuntos
Bacillaceae , Celulase , Celulases , Saccharum , Celulase/metabolismo , Celulose/química , Saccharum/metabolismo , Estabilidade Enzimática , Temperatura , Glucose , Concentração de Íons de Hidrogênio
4.
RSC Adv ; 12(44): 28608-28622, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36320510

RESUMO

In this computational work, with the aim of boosting the ultimate efficiency of organic photovoltaic cells, seven small acceptors (IDST1-IDST7) were proposed by altering the terminal-acceptors of reference molecule IDSTR. The optoelectronic characteristics of the IDSTR and IDST1-IDST7 molecules were investigated using the MPW1PW91/6-31G(d,p) level of theory, and solvent-state computations were examined using time-dependent density functional theory (TD-DFT) simulation. Nearly all the investigated photovoltaic aspects of the newly proposed molecules were found to be better than those of the IDSTR molecule e.g. in comparison to IDSTR, IDST1-IDST7 exhibit a narrower bandgap (E gap), lower first excitation energy (E x), and a significant red-shift in the absorbance maxima (λ max). According to the findings, IDST3 has the lowest E x (1.61 eV), the greatest λ max (770 nm), and the shortest E gap (2.09 eV). IDST1-IDST7 molecules have higher electron mobility because their RE of electrons is less than that of IDSTR. Hole mobility of IDST2-IDST7 is higher than that of the reference owing to their lower RE for hole mobility than IDSTR. By coupling with the PTB7-Th donor, the open circuit voltage (V OC) of the investigated acceptor molecules (IDSTR and IDST1-IDST7) was calculated and investigation revealed that IDST4-IDST6 molecules showed higher V OC and fill factor (FF) values than IDSTR molecules. Accordingly, the modified molecules can be seriously evaluated for actual use in the fabrication of OSCs with enhanced photovoltaic and optoelectronic characteristics in light of the findings of this study.

5.
RSC Adv ; 12(51): 32949-32955, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36425158

RESUMO

In the current research, the resist action of silver-doped polystyrene/polyethylene terephthalate (PET) solar thin film towards laser irradiation was observed. Moreover, silver-doped polystyrene nanoparticles were synthesized via a chemical technique while the PET film was purchased from the commercial market. Nd:YAG pulsed laser has been used to irradiate the samples at 2 minutes, 4 minutes, and 6 minutes respectively. The XRD (X-ray diffraction) pattern shows that silver-doped polystyrene peak at around angle θ = 26° tends to decrease after the bombardment of Nd:YAG pulsed laser. This indicates that the crystallinity of PET film decreased after laser irradiation. The Raman spectra have revealed the zwitter characteristics of silver-doped polystyrene are shifting of bands at 1380 cm-1 and 1560 cm-1 upon laser irradiation. For PET film, the Raman spectra showed that the exposed regions tend to change to cross-linking/chain-scissoring at 2 minutes and 4 minutes of irradiation. The surface roughness first increases and decreases upon irradiation. These results indicate that silver-doped polystyrene/polyethylene terephthalate (PET) thin film is appropriate for solar cell applications.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36231501

RESUMO

This article reports the synthesis of PbO doped MgZnO (PbO@MgZnO) by a co-precipitation method, followed by an ultrasonication process. PbO@MgZnO demonstrates a significant adsorption capability toward Magenta Dye (MD). The greatest adsorption capability was optimized by varying parameters such as pH, MD concentration, and adsorbent dose. The kinetics study illustrates that the adsorption of MD on PbO@MgZnO follows the pseudo-second-order. The isotherm study revealed that Langmuir is best fitted for the adsorption, but with little difference in the R2 value of Langmuir and Freundlich, the adsorption process cloud be single or multi-layer. The maximum adsorption capacity was found to be 333.33 mg/g. The negative ΔG refers to the spontaneity of MD adsorption on PbO@MgZnO. The steric parameters from statistical physics models also favor the multi-layer adsorption mechanism. As a function of solution temperature, the parameter n pattern has values of n = 0.395, 0.290, and 0.280 for 298, 308, and 318 K, respectively (i.e., all values were below 1). Therefore, horizontal molecule positioning and multiple locking mechanisms were implicated during interactions between MD and PbO@MgZnO active sites.


Assuntos
Corantes de Rosanilina , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Física , Termodinâmica , Poluentes Químicos da Água/análise
7.
ACS Appl Mater Interfaces ; 14(41): 46581-46594, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194123

RESUMO

Finding the active center in a bimetallic zeolite imidazolate framework (ZIF) is highly crucial for the electrocatalytic oxygen evolution reaction (OER). In the present study, we constructed a bimetallic ZIF system with cobalt and manganese metal ions and subjected it to an electrospinning technique for feasible fiber formation. The obtained nanofibers delivered a lower overpotential value of 302 mV at a benchmarking current density of 10 mA cm-2 in an electrocatalytic OER study under alkaline conditions. The obtained Tafel slope and charge-transfer resistance values were 125 mV dec-1 and 4 Ω, respectively. The kinetics of the reaction is mainly attributed from the ratio of metals (Co and Mn) present in the catalyst. Jahn-Teller distortion reveals that the electrocatalytic active center on the Mn-incorporated ZIF-67 nanofibers (Mn-ZIF-67-NFs) was found to be Mn3+ along with the Mn2+ and Co2+ ions on the octahedral and tetrahedral sites, respectively, where Co2+ ions tend to suppress the distortion, which is well supported by density functional theory analysis, molecular orbital study, and magnetic studies.

8.
Molecules ; 27(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296481

RESUMO

Plants of the genus Strobilanthes have notable use in folklore medicines as well as being used for pharmacological purposes. The present work explored the biological predispositions of Strobilanthes glutinosus and attempted to accomplish a comprehensive chemical profile through GC-MS of different fractions concerning polarity (chloroform and n-butanol) and LC-ESI-MS of methanolic extract by both positive and negative ionization modes. The biological characteristics such as antioxidant potential were assessed by applying six different methods. The potential for clinically relevant enzyme (α-amylase, α-glucosidase, and tyrosinase) inhibition was examined. The DPPH, ABTS, CUPRAC, and FRAP results revealed that the methanol fraction presented efficient results. The phosphomolybdenum assay revealed that the n-hexane fraction showed the most efficient results, while maximum metal chelation potential was observed for the chloroform fraction. The GC-MS profiling of n-butanol and chloroform fractions revealed the existence of several (110) important compounds presenting different classes (fatty acids, phenols, alkanes, monoterpenes, diterpenes, sesquiterpenoids, and sterols), while LC-ESI-MS tentatively identified the presence of 44 clinically important secondary metabolites. The n-hexane fraction exhibited the highest potential against α-amylase (497.98 mm ACAE/g extract) and α-glucosidase (605.85 mm ACAE/g extract). Significant inhibitory activity against tyrosinase enzyme was displayed by fraction. Six of the prevailing compounds from the GC-MS study (lupeol, beta-amyrin, stigmasterol, gamma sitosterol, 9,12-octadecadienoic acid, and n-hexadecanoic acid) were modelled against α-glucosidase and α-amylase enzymes along with a comparison of binding affinity to standard acarbose, while three compounds identified through LC-ESI-MS were docked to the mushroom tyrosinase enzyme and presented with significant biding affinities. Thus, it is assumed that S. glutinosus demonstrated effective antioxidant and enzyme inhibition prospects with effective bioactive molecules, potentially opening the door to a new application in the field of medicine.


Assuntos
Plantas Medicinais , Plantas Medicinais/química , Antioxidantes/química , Monofenol Mono-Oxigenase , Sitosteroides , Metanol/química , alfa-Glucosidases , Cromatografia Gasosa-Espectrometria de Massas , Clorofórmio , Acarbose , 1-Butanol , Estigmasterol , Ácido Palmítico , Ácido Linoleico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inibidores Enzimáticos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Fenóis/análise , alfa-Amilases , Monoterpenos , Alcanos
9.
Molecules ; 27(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080500

RESUMO

Novel cyano-benzylidene xanthene derivatives were synthesized using one-pot and condensation reactions. A diprotic Brønsted acid (i.e., oxalic acid) was used as an effective catalyst for the promotion of the synthesis process of the new starting xanthene-aldehyde compound. Different xanthene concentrations (ca. 0.1-2.0 mM) were applied as corrosion inhibitors to control the alkaline uniform corrosion of aluminum. Measurements were conducted in 1.0 M NaOH solution using Tafel extrapolation and linear polarization resistance (LPR) methods. The investigated xanthenes acted as mixed-type inhibitors that primarily affect the anodic process. Their inhibition efficiency values were enhanced with inhibitor concentration, and varied according to their chemical structures. At a concentration of 2.0 mM, the best-performing studied xanthene derivative recorded maximum inhibition efficiency values of 98.9% (calculated via the Tafel extrapolation method) and 98.4% (estimated via the LPR method). Scanning electron microscopy (SEM) was used to examine the morphology of the corroded and inhibited aluminum surfaces, revealing strong inhibitory action of each studied compound. High-resolution X-ray photoelectron spectroscopy (XPS) profiles validated the inhibitor compounds' adsorption on the Al surface. Density functional theory (DFT) and Monte Carlo simulations were applied to investigate the distinction of the anticorrosive behavior among the studied xanthenes toward the Al (111) surface. The non-planarity of xanthenes and the presence of the nitrile group were the key players in the adsorption process. A match between the experimental and theoretical findings was evidenced.


Assuntos
Alumínio , Xantenos , Ácidos/química , Adsorção , Alumínio/química , Corrosão , Xantenos/química
10.
Nanomaterials (Basel) ; 12(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36145037

RESUMO

The efficiency of photovoltaics (PVs) is related to cover material properties and light management in upper layers of the device. This article investigates new polyimide (PI) covers for PVs that enable light trapping through their induced surface texture. The latter is attained via a novel strategy that involves multi-directional rubbing followed by plasma exposure. Atomic force microscopy (AFM) is utilized to clarify the outcome of the proposed light-trapping approach. Since a deep clarification of either random or periodic surface morphology is responsible for the desired light capturing in solar cells, the elaborated texturing procedure generates a balance among both discussed aspects. Multidirectional surface abrasion with sand paper on pre-defined directions of the PI films reveals some relevant modifications regarding both surface morphology and the resulted degree of anisotropy. The illuminance experiments are performed to examine if the created surface texture is suitable for proper light propagation through the studied PI covers. The adhesion among the upper layers of the PV, namely the PI and transparent electrode, is evaluated. The correlation between the results of these analyses helps to identify not only adequate polymer shielding materials, but also to understand the chemical structure response to new design routes for light-trapping, which might significantly contribute to an enhanced conversion efficiency of the PV devices.

11.
ACS Omega ; 7(28): 24396-24414, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35874249

RESUMO

Nanoscale nonlinear optical (NLO) materials have received huge attention of the scientists in current decades because of their enormous applications in optics, electronics, and telecommunication. Different studies have been conducted to tune the nonlinear optical response of the nanomaterials. However, the role of alkali metal (Li, Na, K) doping on triggering the nonlinear optical response of nanomaterials by converting their centrosymmetric configuration into noncentrosymmetric configuration is rarely studied. Therefore, to find a novel of way of making NLO materials, we have employed density functional theory (DFT) calculations, which helped us to explore the effect of alkali metal (Li, Na, K) doping on the nonlinear optical response of tetragonal graphene quantum dots (TGQDs). Ten new complexes of alkali metal doped TGQDs are designed theoretically. The binding energy calculations revealed the stability of alkali metal doped TGQDs. The NLO responses of newly designed complexes are evaluated by their polarizability, first hyperpolarizability (ßo), and frequency dependent hyperpolarizabilities. The Li@r8a exhibited the highest first hyperpolarizability (ßo) value of 5.19 × 105 au. All these complexes exhibited complete transparency in the UV region. The exceptionally high values of ßo of M@TGQDs are accredited to the generation of diffuse excess electrons, as indicated by NBO analysis and PDOS. NCI analysis is accomplished to examine the nature of bonding interactions among alkali metal atoms and TGQDs. Our results suggest alkali metal doped TGQD complexes as potential candidates for nanoscale NLO materials with sufficient stability and enhanced NLO response. This study will open new doors for making giant NLO response materials for modern hi-tech applications.

12.
ACS Omega ; 7(21): 18027-18040, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35664583

RESUMO

Organic compounds having significant nonlinear optical (NLO) applications are being employed in the optoelectronics field. In the current work, a series of non-fullerene acceptor (NFA) based compounds are designed by modifying the acceptors with different substituents using DTS(FBTTh 2 ) 2 R1 as a reference compound. To study the NLO responses to the tuning of various acceptors, DFT and TD-DFT based parameters were calculated at the M06 level along with the 6-31G(d,p) basis set. The designed compounds (MSTD2-MSTD7) showed smaller values of the energy gap in comparison to the reference compound. The energy gaps of the title compounds were linked to global reactivity insights; MSTD7 provided a lower band gap, with smaller and larger quantities for hardness and softness characteristics, respectively. Further, UV-vis analyses were performed for all of the designed compounds, displaying wavelengths red-shifted from that of DTS(FBTTh 2 ) 2 R1 . The intraelectron transfer (ICT) process and stability of the title compounds were explored via frontier molecular orbital (FMO) and natural bond orbital (NBO) studies, respectively. Out of all the designed compounds, the highest value of linear polarizability ⟨α⟩ of 3.485 × 10-22 esu, first hyperpolarizability (ßtotal) of 13.44 × 10-27 esu and second-order hyperpolarizability ⟨γ⟩ of 3.66 × 10-31 esu were exhibited by MSTD7. In short, all of the designed compounds exhibited promising NLO properties because of their low charge transport resistance. These NLO properties may be useful for experimental researchers to uncover NLO materials for modern applications.

13.
R Soc Open Sci ; 9(6): 211411, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35706656

RESUMO

The miscibility between hydrophobic and hydrophilic biopolymers has been of significant challenge. This study used a novel simplified chitin modification method to produce phthalic chitin using phthalic anhydride in a substitution reaction. The FT-IR functional group analysis was used to confirm the substitution reaction. The modified chitin was used as compatibilizer in polylactic acid (PLA)/starch biocomposite to enhance its properties. The biocomposite was prepared using melt extrusion and compression moulding technique. The biocomposite's morphological, thermomechanical and water absorption properties were characterized using scanning electron microscope, tensile test, dynamic mechanical analysis, thermogravimetry analysis, differential scanning calorimetry, thickness swelling and water absorption test. The FT-IR study shows a successful substitution reaction of the amine hydrogen ion present in the chitin as opposed to substituting the hydrogen ion in the hydroxide group. The tensile and impact properties of biocomposite incorporated with modified chitin showed better results compared with other samples. The SEM images showed uniform miscibility of the modified biocomposite. The dynamic mechanical analysis showed improved modulus value with the incorporation of modified chitin. The thermal properties showed improved thermal stability of the modified biocomposite. Furthermore, the percentage of water absorbed by biocomposite with modified chitin is reduced compared with the PLA/starch biocomposite. The produced biodegradable ternary blend can be used as a substitute for plastics in industrial applications.

14.
RSC Adv ; 12(25): 16029-16045, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35733683

RESUMO

Strategies for designing remarkable nonlinear optical materials using excess electron compounds are well recognized in literature to enhance the applications of these compounds in nonlinear optics. In this study, density functional theory simulations are performed to study alkali and alkaline earth metal-doped benzocryptand using the B3LYP/6-31G+(d, p) level of theory. Vertical ionization energies (VIEs), reactivity parameters, interaction energies, and binding energies exposed the thermodynamic stability of these complexes. FMO analysis revealed that HOMO is located on alkali metals having polarized electrons, which are easy to excite. The doping strategy enhanced the charge transfer with low bandgap energy in the range of 0.68-2.23 eV, which is lower than that of the surface BC (5.50 eV). Also, the lower transition energies and higher oscillator strength indicate that these complexes exhibit excellent electronic and optical properties. Non-covalent interaction analysis suggested the presence of van der Waals interactions between dopants and surface. IR analysis provided information about the frequencies of stretching vibrations present in the complexes due to different bonds. UV-vis analysis revealed that all the newly designed excess electron complexes are transparent in the UV region and possessed maximum absorption in the visible and NIR region, ranging from 753.6 to 2150 nm, which is higher than the surface (244 nm). Thus, these complexes have a potential for high-performance NLO materials in the applications of optics. Natural bond orbital analysis (NBO), transition density matrix (TDM), electron density difference map (EDDM), and density of state (DOS) analyses were also performed to study the charge transfer properties. Moreover, these complexes possessed remarkable optoelectronic properties due to a significant increase in the isotropic linear polarizability (α iso) in the range of 629.59-1423.23 au. Further, these systems demonstrated an extraordinary large total first hyperpolarizability (ß tl) in the range of 3695.55-910 706.43 au. The rationalization of hyperpolarizability by the two-level model reflected a noteworthy increase in ß tl because of low transition energies (ΔE) and high transition dipole moment (Δµ). Thus, our results showed that alkali and alkaline earth metal-doped BC might be a competitor for efficient nonlinear optical properties with practical applications in the area of optoelectronics.

15.
Dalton Trans ; 51(21): 8279-8289, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35579562

RESUMO

In this work, a photoelectrochemical (PEC) aptasensor for detecting kanamycin (KAN) was designed based on an aptamer modified Bi/BiOBr/titania nanorod array (TiO2 NRA). Bi/BiOBr was loaded onto the TiO2 NRA via a one-pot solvothermal method using glucose as a reductant. The p-n heterojunction structure constructed from chrysanthemums like BiOBr and the TiO2 NRA improves the electron transfer rate. Combined with metal Bi with the surface plasmon resonance (SPR) effect, it further increases the absorption range of visible light and enhances the light response performance of the PEC aptasensor. The KAN aptamer is fixed to the Bi/BiOBr/TiO2 NRA photoelectric material through the CN structure. Once the aptamer precisely captures KAN molecules, photocurrent changes are generated to realize the detection of KAN. The designed PEC aptasensor shows good detection performance in the linear response range of 1 pM-200 nM, and the detection limit is 0.7 pM (S/N = 3). The aptasensor was applied to the determination of KAN in milk with satisfactory results.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanotubos , Aptâmeros de Nucleotídeos/química , Bismuto , Técnicas Eletroquímicas/métodos , Canamicina , Limite de Detecção , Nanotubos/química , Titânio
16.
Polymers (Basel) ; 14(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406312

RESUMO

The strawberry has a very short postharvest life due to its fast softening and decomposition. The goal of this research is to see how well a starch-silver nanoparticle (St-AgNPs) coating affects the physical, chemical, and microbiological qualities of strawberries during postharvest life. Additionally, the effect of washing with running water on silver concentration in coated strawberry fruit was studied by an inductively coupled plasma-optical emission spectrometer (ICP-OES). Furthermore, the shelf-life period was calculated in relation to the temperature of storage. Fourier transform infrared-attenuated total reflectance (FTIR-ATR), UV-Visible, and Transmission Electron Microscopic (TEM) were used to investigate the structure of starch-silver materials, the size and shape of AgNPs, respectively. The AgNPs were spherical, with an average size range of 12.7 nm. The coated samples had the lowest weight loss, decay, and microbial counts as compared to the uncoated sample. They had higher total acidity and anthocyanin contents as well. The washing process led to the almost complete removal of silver particles by rates ranging from 98.86 to 99.10%. Finally, the coating maintained strawberry qualities and lengthened their shelf-life from 2 to 6 days at room storage and from 8 to 16 days in cold storage.

17.
Int J Biol Macromol ; 207: 402-413, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35278509

RESUMO

The present work-study the improvement of the loading and release efficiency of sofosbuvir drug (SOF) for anti-hepatitis C virus (HCV) by the combination process with ß-cyclodextrin (ßCD) basket to form a novel self-assembly ßCD-SOF which load on the chitosan nanoparticle (Cs NPs) to form a novel hybrid composite (Cs@ßCD-SOF). The characterization process performs for confirming the formation of hybrid composite with various methods. The loading efficiency of SOF is performed by UV-Vis spectroscopy, which is reported at 94.54% for Cs@ßCD-SOF, while in the reverse case the efficiency is ßCD-SOF@Cs 65.2%. The binding constant (Kb) was reported at 1.33 ± 0.02, and 0.1069 ± 0.03 min-1for Cs@ßCD-SOF and ßCD-SOF@Cs, respectively. The release process of SOF is reported by UV-Vis spectra at 271 nm with 30 min intervals, at pH 7.4 the release efficiency is 67% after 6 h, and 78% after 21 h, while it gave 61% release efficiency at pH 6.8 after time 6 h, and 63% after 21 h. The cytotoxicity assay of the SOF capsulated hybrid materials (ßCD-SOF and Cs@ßCD-SOF) has been detected with three different types of cell lines like mouse normal liver cells (BNL), hepatocellular carcinoma (HepG2), and breast adenocarcinoma (MCF-7). SRB method for the quick screening is used for the cytotoxicity assay of the SOF capsulated materials, where the examined composites appear a safety status and high viability against the examined cell line. The FRAP method is used to detect the antioxidant activities of SOF capsulated materials. The recommendation for using a safe alternative SOF drug based on Cs NPs and ßCD which give on loading and release efficiency compared to SOF drugs, but the clinical trials are an important step.


Assuntos
Quitosana , Hepatite C , Nanopartículas , beta-Ciclodextrinas , Animais , Antivirais/farmacologia , Quitosana/química , Quimioterapia Combinada , Genótipo , Hepacivirus , Hepatite C/tratamento farmacológico , Camundongos , Nanopartículas/química , Preparações Farmacêuticas , Sofosbuvir/farmacologia , Resultado do Tratamento , beta-Ciclodextrinas/química
18.
Anal Chim Acta ; 1180: 338860, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34538337

RESUMO

Mesopores silica nanotubes (MSNTs)-based chemical sensors for the rapid detection and of highly selective Fe2+ ions have been prepared. The novel nanosensors were prepared via immobilization of 1,10-phenanthroline-5-amine (PA) and bathophenanthroline (BP) onto the MSNTs. The resultant PA and BP sensors display high sensitivity for detection the Fe2+ ions in tap water, river water, sea water, two units in simple cycle power station, and biological samples. More interestingly, upon meeting ultra-trace amount of Fe2+ ions, a red complex appears at once. Color changes can be seen from the naked eye and tracked with a smartphone or spectrophotometric techniques. The response time that is necessary to achieve a stable signal was less than 15 s. The Univariate (Univar) calibration technique had been utilized for the determination of figures of merits. The detection limit obtained from the digital image analysis was 19 ppb (7.04 × 10-7 M) for Fe2+ ions, while the obtained from the spectrophotometric method was 6.7 ppb (2.48 × 10-7 M). Therefore, the two sensors had been successfully used in the determination of Fe2+ in several real samples with high sensitivity and selectivity. In addition, they can be used as a simple, rapid, and portable method to detect and quantify the pre rust in any cooler system.


Assuntos
Nanotubos , Águas Residuárias , Colorimetria , Íons , Dióxido de Silício
19.
Sci Rep ; 11(1): 14716, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282219

RESUMO

Imidacloprid (Imid), a systemic neonicotinoid insecticide, is broadly used worldwide. It is reported to contaminate aquatic systems. This study was proposed to evaluate oxidative stress and genotoxicity of Imid on Nile tilapia (Oreochromis niloticus) and the protective effect of ascorbic acid (Asc). O. niloticus juveniles (30.4 ± 9.3 g, 11.9 ± 1.3 cm) were divided into six groups (n = 10/replicate). For 21 days, two groups were exposed to sub-lethal concentrations of Imid (8.75 ppm, 1/20 of 72 h-LC50 and 17.5 ppm, 1/10 of 72 h-LC50); other two groups were exposed to Asc (50 ppm) in combination with Imid (8.75 and 17.5 ppm); one group was exposed to Asc (50 ppm) in addition to a group of unexposed fish which served as controls. Oxidative stress was assessed in the liver where the level of enzymatic activities including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in addition to mRNA transcripts and, Lipid peroxidation (LPO) were evaluated. Moreover, mitotic index (MI) and comet assay were performed, in addition, the erythrocytic micronucleus (MN), and nuclear abnormalities (NA) were observed to assess genotoxicity in fish. Imid exposure induced significant (p ˂ 0.05) changes in the antioxidant profile of the juveniles' liver by increasing the activities and gene expression of SOD, CAT and GPX as well as elevating the levels of LPO. DNA strand breaks in gill cells, erythrocytes and hepatocytes along with erythrocytic MN and NA were also significantly elevated in Imid-exposed groups. MI showed a significant (p ˂ 0.05) decrease associated with Imid exposure. Asc administration induced a significant amelioration towards the Imid toxicity (8.75 and 17.5 ppm). A significant protective potency against the genotoxic effects of Imid was evidenced in Asc co-treated groups. Collectively, results highlight the importance of Asc as a protective agent against Imid-induced oxidative stress and genotoxicity in O. niloticus juveniles.


Assuntos
Ácido Ascórbico/farmacologia , Ciclídeos , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Animais , Antioxidantes/metabolismo , Ciclídeos/genética , Citoproteção/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Interações Medicamentosas , Exposição Ambiental , Dose Letal Mediana , Testes de Mutagenicidade , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/farmacologia
20.
Luminescence ; 36(7): 1781-1792, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34309162

RESUMO

Simple preparation of flame-retardant, photoluminescent, and superhydrophobic smart nanocomposite coating was developed and applied onto cotton fibres using the simple pad-dry-cure technique. This novel strategy involved the immobilization of rare-earth-doped aluminium strontium oxide (ASO; SrAl2 O4 :Eu+2 ,Dy+3 ) nanoparticles, environmentally friendly room temperature vulcanizing silicone rubber (RTV) and environmentally friendly Exolet AP422 (Ex). The fabrics were also able to produce a char film in the fire-resistant assessment, providing fibres with a self-extinguishing characteristic. Furthermore, the fire-retardant performance of the coated cotton samples remained resistant to washing over 35 laundry cycles. The superhydrophobicity of the treated fabrics was monitored to improve by increasing the photoluminescent phosphor nanoparticles. The produced transparent photoluminescent film displayed an absorption at 360 nm and an emission at 526 nm. The photoluminescent fabrics were observed to generate different colorimetric shades, including white, green-yellow and bright white as monitored by Commission Internationale de l'Éclairage laboratory colorimetric coordinates. Slow emissions were detected for the treated cotton fabrics as monitored by emission, ultraviolet-visible light absorption, lifetime, and decay time spectral profiles to indicate glow in the dark phosphorescence effect. Both comfort and mechanical properties of the coated fibres were evaluated by measuring their bending length and air permeability.


Assuntos
Celulose , Nanocompostos , Fibra de Algodão , Estrôncio , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...