Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 632(8025): 543-549, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38862025

RESUMO

The carbon skeleton of any organic molecule serves as the foundation for its three-dimensional structure, playing a pivotal role in determining its physical and biological properties1. As such, taxane diterpenes are one of the most well-known natural product families, primarily owing to the success of their most prominent compound, paclitaxel, an effective anticancer therapeutic for more than 25 years2-6. In contrast to classical taxanes, the bioactivity of cyclotaxanes (also referred to as complex taxanes) remains significantly underexplored. The carbon skeletons of these two groups of taxanes differ significantly, and so would typically their own distinct synthetic approaches. Here we report a versatile synthetic strategy based on the interconversion of complex molecular frameworks, providing general access to the wider taxane diterpene family. A range of classical and cyclotaxane frameworks was prepared including, among others, the total syntheses of taxinine K (2), canataxapropellane (5) and dipropellane C from a single advanced intermediate. The synthetic approach deliberately eschews biomimicry, emphasizing instead the power of stereoelectronic control in orchestrating the interconversion of polycyclic frameworks.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Técnicas de Química Sintética , Diterpenos , Taxoides , Produtos Biológicos/síntese química , Produtos Biológicos/química , Hidrocarbonetos Aromáticos com Pontes/síntese química , Hidrocarbonetos Aromáticos com Pontes/química , Carbono/química , Diterpenos/síntese química , Diterpenos/química , Estereoisomerismo , Taxoides/química , Taxoides/síntese química , Paclitaxel/química
2.
Angew Chem Int Ed Engl ; 61(18): e202200977, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35188710

RESUMO

Post-translational modification (PTM) with ADP-ribose and poly(ADP-ribose) using nicotinamide adenine dinucleotide (NAD+ ) as substrate is involved in the regulation of numerous cellular pathways in eukaryotes, notably the response to DNA damage caused by cellular stress. Nevertheless, due to intrinsic properties of NAD+ e.g., high polarity and associated poor cell passage, these PTMs are difficult to characterize in cells. Here, two new NAD+ derivatives are presented, which carry either a fluorophore or an affinity tag and, in combination with developed methods for mild cell delivery, allow studies in living human cells. We show that this approach allows not only the imaging of ADP-ribosylation in living cells but also the proteome-wide analysis of cellular adaptation by protein ADP-ribosylation as a consequence of environmental changes such as H2 O2 -induced oxidative stress or the effect of the approved anti-cancer drug olaparib. Our results therefore pave the way for further functional and clinical studies of the ADP-ribosylated proteome in living cells in health and disease.


Assuntos
NAD , Proteoma , ADP-Ribosilação , Adenosina Difosfato Ribose , Humanos , NAD/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA